

HMPP Directives

HMPP Workbench 3.0

Headquarters – France

Immeuble CAP Nord

4A Allée Marie Berhaut

35000 Rennes

France

Tel.: +33 (0)2 22 51 16 00

Fax: +33 (0)2 23 20 16 43

info@caps-entreprise.com

N° d’agrément formation :

53 35 08397 35

CAPS – USA

4701 Patrick Drive Bldg 12

Santa Clara

CA 95054

Tel.: +1 408 550 2887 x70

usa@caps-entreprise.com

CAPS – CHINA

Suite E2, 30/F

JuneYao International Plaza

789, Zhaojiabang Road,

Shanghai 200032

Tel.: +86 21 3363 0057

Fax: +86 21 3363 0067

apac@caps-entreprise.com

Visit our website: http://www.caps-entreprise.com

IDDN.FR.001.490007.000.S.P.2008.000.10600

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without
authorization.

 HMPP Directives

3/86

SUMMARY

1. Introduction 7

2. HMPP Overview 8

2.1. HMPP Development Workbench Overview ... 8

2.2. HMPP Runtime Overview .. 9

2.3. HMPP generators .. 9

3. HMPP Concept 10

3.1. The HMPP Codelet Concept ... 10

3.1.1. Execution Error with Synchronous Codelet RPCs 11

3.1.2. Execution Error with Asynchronous Codelet RPCs 12

3.2. HMPP Runtime .. 12

3.3. HMPP Memory Model.. 12

4. HMPP Directives 14

4.1. Introduction .. 14

4.2. Concept of set of directives ... 15

4.3. Syntax of the HMPP directives .. 15

4.4. Factorizing directive arguments: the with directive ... 19

4.5. Directives for Implementing the Remote Procedure Call on a HWA ... 20

4.5.1. codelet directive 20

4.5.2. group directive 24

4.5.3. callsite directive 25

4.5.4. synchronize directive 25

4.5.5. acquire directive 26

4.5.6. release directive 26

4.5.7. allocate directive 27

4.5.8. free directive 28

4.6. Controlling Data Transfer between the Host CPU and the HWA .. 29

4.6.1. advancedload directive 29

4.6.2. delegatedstore directive 31

4.6.3. Asynchronous transfers 33

4.6.4. Array section in HMPP 34

 HMPP Directives

4/86

4.7. Transfer policies .. 36

4.7.1. atcall transfer policy 36

4.7.2. atfirstcall transfer policy 37

4.7.3. manual transfer policy 38

4.7.4. automatic transfer policy 39

4.7.5. disregard directive 41

4.8. HMPP data declaration .. 45

4.8.1. map directive 45

4.8.2. mapbyname directive 46

4.8.3. resident directive 47

4.8.4. Data mirroring directives 49

4.9. Parallel directive (Using multiple HWA devices) ... 51

4.10. Regions in HMPP .. 52

4.11. External and native functions .. 55

5. Supported Languages 56

5.1. Input C Code .. 56

5.1.1. Supported C Language Constructs 56

5.1.2. Parameter Passing Convention for C Codelets 57

5.1.3. Inlined functions 57

5.1.4. Atomic intrinsic functions 57

5.2. Input FORTRAN Code ... 59

5.2.1. Supported FORTRAN Language Constructs 59

5.2.2. Unsupported statements in codelet 68

5.2.3. Parameter Passing Convention for FORTRAN codelets 68

5.2.4. Known limitations 68

6. HMPP Codelet Generators 69

6.1. CUDA Generator ... 69

6.2. OpenCL Generator .. 69

6.3. Naming Convention ... 69

6.3.1. CUDA Codelet Generator 69

6.3.2. OPENCL Codelet Generator 70

7. Compiling HMPP Applications 72

7.1. Overview .. 72

7.2. Common Command Line Parameters ... 73

7.2.1. General Options 73

 HMPP Directives

5/86

7.2.2. Host compiler options 74

7.2.3. Report option 74

7.2.4. HMPP codelet generation options 74

7.2.5. HMPP native function compilation 75

7.2.6. HMPP external function compilation 75

7.2.7. HMPP codelet compilation: proprietary compiler options 76

7.2.8. HMPP miscellaneous options 76

7.2.9. __HMPP predefined macro 76

7.2.10. HMPP Environment Variables 76

8. Running HMPP Applications 77

9. Supported Platforms and Compilers 78

10. HMPP Installation 79

11. Annexes 80

Annex 1. Glossary ... 80

Annex 2. Bibliography ... 82

Annex 3. List of Figures .. 83

Annex 4. List of Listings .. 84

Annex 5. List of Tables .. 86

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 6/86

Revisions history

Version Date Writer Modified pages Revision object

V2.4.0 15/11/2010 CAPS entreprise

All

§4.5.1, §4.7.4,

§4.7.4

§0

Restructuration of the documentation

(from version 2.3.5)

Addition of the automatic data transfer

mode for codelet’s argument

Automatic detection of Inputs and
Outputs in HMPP region

V2.4.1 24/12/2010 CAPS entreprise §3.4.1

§4.1.2

Correction on Listing 8

Clarification on parameter passing

convention

V2.4.2 28/01/2011 CAPS entreprise

Addition of Intel FORTRAN Compiler

for Windows

V2.4.3 04/03/2011 CAPS entreprise CAPS entreprise

V2.4.4 24/03/2011 CAPS entreprise Addition of Absoft’s Pro Fortran V11

Compiler for Windows

V2.5.0 16/06/2011 CAPS entreprise §4.7.4

§4.11, §7.2.5,

§7.2.6

§7.2.9

Additional information on automatic

data transfer

Addition of external and native

functions

__HMPP predefined macro

V2.5.1 07/07/2011 CAPS entreprise Typography corrections

V2.5.2 06/06/2011 CAPS entreprise §4.6.2

§4.6.3

Add asynchronous clause for

delegatedstore directive

Addition of asynchronous data

transfers

V3.0.0 16/12/2011 CAPS entreprise

§4.5.5
§4.5.8
§4.8.4
§4.9

§4.7

New HMPP directives:

¶ acquire

¶ free

¶ Addition of data mirroring

¶ Multiple devices management

Data transfer policies

V3.0.1 12/01/2012 CAPS entreprise §5.1.4 Supported atomic functions

V3.0.2 20/01/2012 CAPS entreprise Typography corrections

V3.0.3 25/01/2012 CAPS entreprise Link reference corrections

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 7/86

1. Introduction

 Warning:

HMPP 3.0.0 only supports the CUDA target for codelet generation. The OpenCL target will be supported

current Q1 2012 (currently available in HMPP 2.5.x).

For convenience, the text referencing the two targets was left in state. In HMPP 3.0.0, only the CUDA target

is to be considered.

The Hybrid Multicore Parallel Programming workbench (HMPP) provides developers with a set of tools

dedicated to build parallel hybrid applications running on manycore systems. These architectures combine

general purpose cores with hardware accelerators (HWAs) such as GPUs or SIMD computing units.

HMPP allows the programmer to write hardware independent applications where hardware specific codes

are dissociated from the legacy code as additional software plug-ins. Contrary to applications that have been

explicitly written for a target architecture, HMPP produces applications that execute on various hardware

platform configurations, whether a HWA is present or not. Hardware-accelerated versions of functions are

executed if the accelerator is present and available, otherwise their native versions are run.

The present document introduces the main HMPP concepts and describes the HMPP directives. This

document comes in addition to the following manuals:

Á HMPP Basics ([R1]). This document introduces the main HMPP concepts.

Á HMPP Codelet Generator Directives, Reference Manual ([R3]) . This manual

describes how to enhance your codelet generation by using HMPPCG directives. An HMPP

preprocessor allowing users to factorize HMPP directives is also described;

Á HMPP Linux Manual ([R5]) . This manual describes how to compile and run your application on

Linux platforms. It also introduces the compilers and Operating Systems supported;

Á HMPP License Installation Guide ([R6]) . This manual presents the procedure to set the

HMPP license on your system.

The remainder of this document is organized as follow:

Á Chapter 3 presents the main concepts of HMPP,

Á Chapter 4 introduces the HMPP directives,

Á Chapter 5 describes the supported languages,

Á Chapter 6 presents the HMPP codelets Generators

Á Chapter 7 is dedicated to the compilation flow process.

A glossary can be found at the end of the document.

It should be noted that most of the examples provided in this document are based on the CUDA backend

generator for historical reasons. The functionalities offered by HMPP are the same for all the backend

generators marketed by CAPS entreprise.

When necessary, CAPS will specify in the text if a feature is dependent of a given material.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 8/86

2. HMPP Overview

2.1. HMPP Development Workbench Overview

Based on a set of directives, the HMPP Workbench contains C and FORTRAN compiler drivers, target code

generators (CUDA, OPENCL) and a runtime for the execution of parallel hybrid applications.

To accelerate the execution of your application with HMPP, the first step is to identify the parts of the

application source code to speed up. Those will become functions called “HMPP codelets” (see section 3.1)

using the HMPP directives. The hardware-accelerated versions of the codelet are defined in their specific

language i.e. C or FORTRAN and using the same programming model. They are hand-written by the user or

automatically produced by the HMPP codelet generators and compiled with the compilers of the HWA

vendor.

The HMPP annotated source code is parsed by the HMPP preprocessor to extract the codelets and to

translate the HMPP directives into calls to the HMPP runtime. The preprocessed code is then compiled and

linked with the HMPP runtime using the host compiler. The HMPP runtime is in charge of managing the

concurrent execution of the codelets.

When no HWA implementation of a codelet is found or if the chosen HWA is not available, the HMPP

runtime executes the native version instead. So, the execution of an HMPP user’s application is still possible.

Figure 1 shows the general workflow of an HMPP application. The left flow path shows how an annotated

codelet is compiled for a given HWA. The right flow path shows the compilation of the rest of the application

compiled and run using the C or FORTRAN compiler on the host.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 9/86

Figure 1 - Workflow overview of the HMPP workbench

2.2. HMPP Runtime Overview

The HMPP runtime is the dynamic library in charge of the execution of the remote procedure calls to the

HWA. Linked to the application, this library initializes the HWA, allocates memory, relays communications

between the host and the HWA and manages the execution of codelets.

2.3. HMPP generators

HMPP workbench provides users with back-end code generators. These code generators are specifically

designed to extract the most of data parallelism from your C and FORTRAN kernels and translate them into

NVIDIA CUDA or OPENCL (Open Computing Language) allowing to run your applications on various

systems.

The code generators marketed by CAPS entreprise are:

Á CUDA for NVIDIA GPU systems;

Á OPENCL for NVIDIA and AMD ATI Stream GPU systems.

It should be noted that hardware constructors do not offer the same level of functionalities with the OpenCL

framework. For the execution of their applications, end-users will pay attention to get the most recently

drivers for their HWA in order to take advantage of the state-of-the-art of hardware constructor’s

development.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 10/86

3. HMPP Concept

HMPP is based on the concept of codelets, functions that can be remotely executed on HWAs. The HMPP

runtime library is in charge of calling the remote procedure (RPCs) as well as managing resources.

In version 2.0, HMPP introduced the facility of defining a group of codelets allowing the programmer to share

data between codelets that are distinct and may run at very different times on the HWA.

As usual with directive-based programming environments, it is important to note that the HMPP development

workbench does not check for incorrect usage of the directives. Misuse of the HMPP directives may lead to

erroneous results.

3.1. The HMPP Codelet Concept

A codelet is a computational part of a program located in a function inside the application. It takes several

scalars and array parameters, performs a computation on these data and returns. The result of the

computation is passed by some parameters given by reference (INPUT(inout) in FORTRAN and pointers and

arrays in C). The function does not support any return code (it is like a subroutine procedure in FORTRAN

and void functions in C). The execution of a codelet is considered as atomic: the execution does not have an

identified intermediate state or data. The execution has no side effects.

The transfer of codelet parameters is performed via the HMPP Runtime protocol. The size of all parameters

must be known
1
 before the transfer of any parameter, and obviously before the codelet execution.

A codelet has the following properties:

1. It is a pure function.

a. It does not contain static or volatile variable declarations nor refer to any global variables except if

these have been declared by a HMPP directive “resident ” (see chapter 4.8.3 for more details on

this subject).

b. It does not contain any function calls with an invisible body (that cannot be inlined). This includes

the use of libraries and system functions such as malloc, printf , ...

c. Every function call must refer to a static pure function (no function pointers).

2. It does not return any value (void function in C or a subroutine in FORTRAN).

3. The number of arguments should be fixed (i.e. no variable number of arguments like vararg in C).

4. It is not recursive.

5. Its parameters are assumed to be non-aliased.

6. It does not contain callsite directives (i.e. RPC to another codelet) or other HMPP directives.

These properties ensure that a codelet RPC can be remotely executed by a HWA. This RPC and its

associated data transfers can be asynchronous.

By default, all the parameters are uploaded to the HWA just before the RPC and downloaded just after its

execution has completed.

1
 The scalar arguments and arrays which size is constant and statically evaluable by HMPP do not require

the user to specify their size.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 11/86

Below is an example of a correct codelet:

#pragma hmpp testlabel1 codelet, target=CUDA, ar gs[v1].io=out
static void codeletOk(int n, float v1[n], float v2[n], float v3[n]) {
 int i;
 for (i = 0 ; i < n ; i++) {
 v1[i] = v2[i] + v3[i];
 }
}

Listing 1 - Codelet definition

The following examples are incorrect codelet definitions or uses:

Á Use of a global variable in a codelet body: since the memory between the HWA and the CPU

is not shared, a global variable cannot be used in a codelet.

......
float globalVar[SIZE];
......
#pragma hmpp testlabel1 codelet, target=CUDA , args[v1].io=out
static void codeletNotOk(int n, float v1[n], float v2[n], float v3[n]) {
 int i;
 for (i = 0 ; i < n ; i++) {
 v1[i] = v2[i] + v3[i]* globalVar[i];
 }
}

Listing 2 - Wrong codelet definition due to the use of a global variable

To fix the error, the global variable needs to be passed as a parameter to the codelet or to be declared as a

“resident ” variable (see chapter 4.8.3 for more details).

Á Aliasing between parameters: the following code produces an erroneous result due to the

aliasing between v1 and v2 that point to the same caller parameters (see line 18, at the “callsite ”

level). On the device, the parameters are in independent data structures.

1 /* Legal codele t declaration */
2 #pragma hmpp testlabel1 codelet, target=CUDA, args[v1].io=inout
3 static void codeletNotOk(int n,
4 float v1[n],
5 float v2[n],
6 float v3[n]) {
7 int i;
8 for (i = 1 ; i < n ; i++) {
9 v1[i] = v2[i - 1] + v3[i];
10 }
11 }
12
13 int main(int argc, char **argv) {
14
15 /* wrong codelet use: the first two vectors are the same array */
16
17 #pragma hmpp testlabel1 callsite
18 codeletNotOk (n, t1 , t1 , t3);
19
20 }

Listing 3 - Wrong codelet definition due to aliasing between parameters

3.1.1. Execution Error with Synchronous Codelet RPCs

In the case of a synchronous codelet RPC (default), when an error occurs during the hardware allocation,

memory loading, or during a codelet call, the runtime API reverts back to the native codelet to resume the

execution. This is illustrated in Figure 2.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 12/86

3.1.2. Execution Error with Asynchronous Codelet RPCs

In asynchronous mode, if a codelet execution fails, the application stops with an error code. In that mode it is

not possible to restore the program state, as the effect of executed instructions between the codelet call site

and the synchronization barrier are not known and cannot be cancelled. This is illustrated in Figure 2.

However, if an error occurs during the memory allocation or during data transfer (the most common cases)

the execution of the codelet is cancelled and the HMPP native codelet is executed.

Asynchronous data transfer or asynchronous codelet execution are hardware accelerator dependent.

Figure 2 - Synchronous versus asynchronous RPC

3.2. HMPP Runtime

The HMPP runtime is in charge of carrying out the concurrent execution of the native and HWA

implementations of the codelets.

At execution, the HMPP runtime detects the available HWAs. When a codelet or a group of codelets is

specified to run on a HWA, if a device is available and if the corresponding group of codelets or the codelet

implementation is present, the HMPP runtime loads it as a software plug-in. It is not necessary to build a

machine-specific version of the host application. The HMPP runtime is able to manage simultaneously

multiple and various HWAs.

If an improved version of a codelet is available, the HMPP runtime loads that in place of the previous codelet

implementation without any recompilation of the application.

3.3. HMPP Memory Model

In the current version of HMPP, the memory address managed at the host level and at the HWA level are

different (see Figure 3). The “Application” and the HMPP runtime have their own private memory. HMPP

deals with this in a transparent way for the user. HMPP can be seen as programming glue between target-

specific programming environments and general purpose programming.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 13/86

Figure 3 - HMPP memory model

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 14/86

4. HMPP Directives

4.1. Introduction

The HMPP directives may be seen as “meta-information” added in the application source code. They are

safe meta-information i.e. they do not change the original code. They address the remote execution (RPC) of

a function as well as the transfers of data to/from the HWA memory.

The simplest use case of HMPP directives is composed of two directives made of a codelet declaration and

callsite marker. They are identified by a unique label indicated in each directive. The scope of the label is the

whole application. For instance, in the listing below the directive at line 2, with label testlabel , declares a

CUDA codelet implementation to be run on a NVIDIA GPU. The call to this codelet is marked line 31.

1
2 #pragma hmpp testlabel codelet, target=CUDA, args[vout].io=inout
3 static void kernel(unsigned int N, unsigned int M,
4 float vout[N][M], float vin[N][M]){
5 int i, j;
6 for(i = 2; i < (N - 2); i++) {
7 for(j = 2; j < (M - 2); j++) {
8 float temp;
9 temp = vin[i][j]
10 + 0.3f *(vin[i - 1][j - 1] + vin[i+1][j+1])
11 - 0.506f *(vin[i - 2][j - 2] + vin[i+2][j+2]);
12 vout[i][j] = temp * (vout[i][j]);
13 }
14 }
15 }
16 int main(int argc, char **argv){
17 unsigned int n = 100;
18 unsigned int m = 20;
19 int i, j;
20 floa t resultat = 0.0f;
21 float out[n][m];
22 float in[n][m];
23 ƛ
24 // init
25 for(i = 0 ; i < n ; i++){
26 for(j = 0 ; j < m ; j++){
27 in[i][j] = (COEFF) * (- 1.0f);
28 out[i][j] = (COEFF) + (j * 0.01f) ;
29 }
30 }
31 #pragma hmpp testlabel callsite
32 kernel(n,m,out,in);
33
34 printf("result : %f \ n",resultat);
35 }

Listing 4 - HMPP codelet source code example

The Table 1 below introduces the HMPP directives. HMPP directives address different needs: some of them

are dedicated to declarations and others are dedicated to the management of the execution.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 15/86

 Control flow instructions Directives for data management

Declarations
Á codelet

Á group

Á function

Á resident

Á map

Á mapbyname

Operational Directives
Á callsite

Á synchronize

Á region

Á parallel

Á allocate

Á free

Á acquire

Á release

Á advancedload

Á delegatedstore

Á disregard

Table 1 - HMPP Directives

4.2. Concept of set of directives

One of the fundamental points of the HMPP approach is the concept of directives and their associated labels

which makes it possible to recreate a coherent structure on a whole set of directives disseminated in an

application.

We distinguish two kinds of labels:

Á One associated to a codelet. In general, the directives carrying this kind of labels are limited to the

management of only one codelet (called stand-alone codelet in the remainder of the document to

distinguish it from the group of codelets).

Á One associated to a group of codelets. These labels are noted as follow: “<LabelOfGroup >“, where

“LabelOfGroup ” is a name specified by the user. In general, the directives which have a label of

this type relate to the whole group.

The concept of group is reserved to a class of problems which requires a specific management of the data

throughout the application to obtain performance.

In the following, for each directive, we will present the both notations for:

Á A stand-alone codelet context: it means that only one set of directives associated to one codelet is

defined. Note that in an application, several separate set of directives can be defined.

Á A group of codelets: means that the set of directives deals with the definition of several codelets in the

same group.

The HMPP directives with different labels do not see each other, i.e. a directive of a given label does not

interfere with a directive using a different label.

Please note that:

Á Inside a set, directives can only interfere (between them) by sharing data;

Á No data can be shared between two distinct sets of directives.

4.3. Syntax of the HMPP directives

In order to simplify the notations, regular expressions will be used to describe the syntax of the HMPP

directives. Below is a short summary of the main notations used.

Á ñ?ò The question mark indicates there is no preceding item or one preceding item.

Á ñ*ò The asterisk indicates there are zero or more the preceding items.

Á “+ò The plus sign indicates that there is one or more the preceding items.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 16/86

Furthermore, to keep the notation as simple as possible, we separately present the notation used in stand-

alone codelet context of the one used with group of codelets. The main difference between the two syntaxes

lies in an additional label dedicated to the management of the groups.

We also introduced a color convention for the description of syntax directives:

Á Reserved HMPP keywords are in blue;

Á Elements of grammar which can be declined in HMPP keywords are in red;

Á User’s variables remain in black.

In stand-alone codelet context, the general syntax of the HMPP directives is:

Á For C language:

#pragma hmpp codelet_label directive_type [, directive_parameters]* [&]

Á For FORTRAN language:

!$hmpp codelet_label directive_type [, directive_parameters]* [&]

In a group of codelets context, the general syntax of the HMPP directives is:

Á For C language:

#pragma hmpp <grp_label > [codelet_label]? directive_type [, directive_parameters]* [&]

Á For FORTRAN language:

!$hmpp < grp_label > [codelet_label]? directive_type [, directive_parameters]* [&]

Where:

Á <grp_l abel>: is a unique identifier naming a group of codelets. In cases where no groups are

defined in the application, this label can simply miss.

Legal label name must follow this grammar: [a - z,A - Z,_][a - z,A - Z,0 - 9,_]*. Note that the ñ<

>ò characters belong to the syntax and are mandatory for this kind of label.

Á codelet_label: is a unique identifier naming a codelet.

Legal label name must follow this grammar: [a - z,A - Z,_][a - z,A - Z,0 - 9,_]*

Á directive_type: is the type of the directive;

Á directive_parameters : designates some parameters associated to the directive_type. These

parameters may be of different kinds and specify either some arguments given to the directive either a

mode of execution (asynchronous versus synchronous for example);

Á [&] : is a character used to continue the directive on the next line (same for C and FORTRAN).

This is illustrated below:

Á example of a simple codelet declaration with no group definition:

#pragma hmpp codelet_label codelet, &
#pragma hmpp & directive_parameter &
#pragma hmpp & [, directive_parameter]*

Á example of a codelet declaration inside a group:

#pragma hmpp <grp_label > codelet_label codelet, &
#pragma hmpp & directive_parameter &
#pragma hmpp & [, directive_para meter]*

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 17/86

Furthermore, the directive’s parameters may themselves accept some arguments. In most cases, these

arguments apply to the parameters of the function.

In the remainder of this document, we will distinguish these two notions by speaking of:

Á Parameters: directives’ parameters,

Á Arguments: directives parameters’ arguments.

The Figure 4 illustrates this with an example. Note that in this example, “outv ” indicated as a value of the

directive parameter points the user’s function arguments.

Figure 4 - Description of parameters and arguments in HMPP directives

Values of the directives’ parameters can be specified by either:

Á Their formal name;

Á Or their order in the function definition;

Á Or under the form of a range (in case several arguments need to be provided to the directives).

Example:

#pragma hmpp <grp_label > directive_type , args[arg_items].xxx

Where “args[arg_items].xxx ” represents the directive’s parameter with:

arg_items: ÁÒÇʍÉÔÅÍ ǁ ƥƘƦ ÁÒÇʍÉÔÅÍ ǂǉ
arg_item: IDENTIFIER | NUMBER | arg_range | param_with_ident
ÁÒÇʍÒÁÎÇÅƙ .5-"%2 ƥ-ƥ .5-"%2
ÐÁÒÁÍʍ×ÉÔÈʍÉÄÅÎÔƙ ÉÄÅÎÔ ƥƙƙƦ ǁǉ ƴ)$%.4)&)%2ǂ
ident: codelet_label | *

Where:

Á IDENTIFIER: is the name of a parameter in the codelet prototype;

Á NUMBER is the numerical position of a function’s argument taken in order starting from 0 in the codelet

prototype.

Listing 5 provides an example where:

Á args[0 - 1] respectively points out sn and sm,

Á args[inv] of course designates inv ,

Á args[3] designates inm ,

Á etc.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 18/86

1 #pragma hmpp simple1 codelet , args[0- 1; inv].io=in, &
2 #pragma hmpp & args[3].io=in, &
3 #pragma hmpp & args[outv].io=inout, &
4 # pragma hmpp & target=CUDA
5 static void matvec(int sn, int sm,
6 float inv[sm], float inm[sn][sm],
7 float *outv){
8
9 }

Listing 5 - Directiveôs parameter and arguments (case of stand-alone codelet notation)

The following constructions are also legal:

#pragma hmpp <MyGroup> delegatedstore, args[*:: var_b]

The ñdelegatedstoreò directive is applied on all the variables ñvar_bò defined in the group ñMyGroupò

(codelet’s parameters and resident variables if any).

Example:

#pragma hmpp <MyGroup> delegatedstore, args[:: MyResidentVarData ; cod1:: var_a ; * :: var_b]

The ñdelegatedstoreò directive is applied on the group ñMyGroupò on the following variables:

Á the resident data ñMyResidentVarDataò;

Á the ñvar_aò argument of the codelet ñcod1ò;

Á all the arguments called ñvar_bò defined in the group ñMyGroupò

Please note that when many parameters of a same codelet are referenced, the following notation is also

supported:

#pragma hmpp <MyGroup> delegatedstore, args[cod1::var_a ; cod1::var_b]

is equivalent to:

#pragma hmpp <MyGroup> cod1 delegatedstore, args[var_a;var_b]

The codelet label ñcod1ò has been moved at the beginning of the directive and has been removed from the

variable declarations in order to shorten the writing.

Table 2 summarizes the different way to access to the arguments:

 By name By rank

(start from 0)

By range All

Implicit current

scope

MyArgument 3 0-5 *

Explicit codelet

scope

MyCodelet::MyArgument MyCodelet::3 MyCodelet::0-7 MyCodelet::*

Explicit resident

scope

::MyResidentVariable

::*

Global scope *::MyVariable

::

Table 2 - Access to HMPP arguments according to their scope

In the remainder of this document, most examples of directives will be given in C. FORTRAN directives only

differ by their prefix.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 19/86

In FORTRAN and C languages, directives are case insensitive.

4.4. Factorizing directive arguments: the with directive

When using e.g. the multi-device allocation and execution capabilities of HMPP, several directive parameters

end up getting duplicated.

The with directive allows to add some parameters to the directives of a given scope.

The syntax of the directive is:

#pragma hmpp with [, asynchronous]*
 [, exclusive]*
 [, device ="device_num"] *
 [, elementsize ="expr"]*
 [, size={ dimsize[,dimsize]* }]*
 [,args[arg_items].section={ [subscript_triplet ,]+ }]*

Where:

Á asynchronous 2: indicates that the transfer can be performed asynchronously, meaning that it is a

non-blocking transfer.

Á exclusive : specifies that the HWA should be locked to the given codelet or grouplet until it is

unlocked with the release directive. When locked, the HWA will not be available for use by other

codelets or grouplets, as well as to other thread or processes.

Á device="device_number" : gives the number of the device on which all data should be allocated.

This is mainly useful when dispatching computations over multiple devices
3
.

Á elementsize=òexprò: specifies the element size (for data mirrors allocation mainly).

Á args[arg_items].size= { dimsize[,dimsize]* } : specifies the size of a non-scalar parameter

(an array). Each dimsize provides the size for one dimension. dimsize must be a simple

expression depending only of the scalar arguments of the codelets.

Á args[arg_items].section={[subscript_triplet,]+]* : indicates that only an array section

will be transferred to the device. See section 4.6.4 - Array section in HMPP on page 34 for further

details.

The example below give an example of the utilization of the with directive:

#pragma hmpp with size={100}, elementsize="sizeof(float)", device="i%2"
 for (i = 0; i < 4; ++i) {
 // Declaration, then allocation of data mirrors on alternative devices
 #pragma hmpp f allocate, data["&x[i][0]"]
 #pragma hmpp f allocate, data["&y[i][0]"]
 // upload of data based on the address
 #pragma hmpp f adva ncedload, data["&x[i][0]","&y[i][0]"]
 }

Figure 5 ï An example of the utilization of the with directive: using the with directive in the mirror allocation loop of Listing 34

on page 52

2
 Target dependent. For more details, see section 4.6.3-Asynchronous transfers on page 35.

3
 See section 4.9 - Parallel directive (Using multiple HWA devices on page 52 for more details

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 20/86

4.5. Directives for Implementing the Remote Procedure Call on a
HWA

Using a HWA consists in a remote procedure call. A set of directives controls the implementation of the

RPC
4
:

1. The codelet directive marks a function as a codelet with the properties of its parameters (inputs and

outputs).

2. The callsite directive declares the call to the codelet that is remotely executed.

4.5.1. codelet directive

A codelet directive specifies that a version of the function following must be optimized for a given hardware.

Its label must be unique in the application.

For the codelet directive:

Á The codelet label is mandatory

Á The group label is not required if no group is defined.

The codelet directive must be inserted immediately before the function declaration or definition in C,

immediately before the subroutine definition in FORTRAN.

The syntax of the directive is:

For a stand-alone codelet:

#pragma hmpp codelet_label codelet [, args[arg_items].io= [in | out | inout | none]]*
 [, args[arg_items].size={ dimsize[,dimsize]* }]*
 [, args[arg_items].transfer= [atcall | atfirstcall | manual| auto]] *
 [, cond = " expr "]
 [, target= target_name [: target_name]*]

For a group of codelets:

#pragma hmpp <grp_label > codelet_label codelet [, args[arg_items].io= [in | out | inout | none]]*
 [, args[arg_items].size={ dimsize[,dimsize]* }]*
 [, args[arg_items].transfer= [atcall|atfirstcall|ma nual| auto]] *
 [, cond = "expr"]
 [, target= target_name [: target_name]*]

Where:

Á <grp_label>: is a unique identifier associated with all the directives that belong to the group

(definition and use).

Á cod elet_label : is a unique identifier associated with all the directives that belong to the same

codelet execution (definition and use).

4
 Further details about HMPP’s RPC can be found in the reference document [R1].

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 21/86

Á args[arg_items].size= { dimsize[,dimsize]* } : specifies the size of a non-scalar parameter

(an array). Each dimsize provides the size for one dimension. dimsize must be a simple

expression depending only of the scalar arguments of the codelets.

args[arg_items].transfer= [atcall|atfirstcall|manual| auto] : indicates which transfer policy should be used for

transfer policy should be used for each argument. Though section 0 - Listing 16 - Array section in advancedload directive -

Transfer of 1 row (FORTRAN)

Á Transfer policies on page 36 has more details, each valid value is briefly described below :

o atcall : indicates that HMPP should systematically upload/download the argument right

before and after the callsite ;

o atfirstcall : indicates that the argument is to be uploaded only once;

o manual : indicates that the argument will not be uploaded/downloaded unless an explicit

transfer (advancedload /delegatedstore) is requested

o auto : indicates that HMPP should automatically and cleverly upload/download the argument

right before and after the callsite

Á args[arg_items 5].io=[in|out|inout |none] : indicates that the specified function arguments

are either input, output, both (inout) or unused (none). By default, unqualified arguments of

codelets, region and resident are INOUT.

The specification of this parameter drives the data transfers between the host and the HWA.

Furthermore, it allows some additional checks about the use of the data in HMPP applications.

In FORTRAN, the “.io ” parameter can be omitted when an ‘INTENT’ attribute is explicitly

specified in the code source.

Table 3 describes the policy applied when both the FORTRAN INTENT and the HMPP parameters

are specified.

In C, a scalar argument is passed by value, so its HMPP input/output property cannot be OUT or INOUT.

Pointer argument with a const attribute has the same restriction (see Table 4).

 INTENT

HMPP IO

Default IN OUT INOUT

Unset IN IN OUT INOUT

IN IN IN Error Warning

OUT OUT Error OUT Warning

INOUT INOUT Error Error INOUT

Table 3 - Intent in FORTRAN language versus HMPP Input/Output parameter policy

5
 See section 4.3 for the syntax of arg_items .

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 22/86

 C Parameters

HMPP IO

By Value By Const address By address

Unset IN IN INOUT

IN IN IN IN

OUT Error Error OUT

INOUT Error Error INOUT

Table 4 - C language parameter versus HMPP Input/Output parameter policy

Á cond= "expr" : specifies an execution condition as a boolean C or Fortran logical expression that

needs to be true in order to start the execution of the codelet. The expression must be correct and

evaluable in all operational directive contexts (see Table 1 - HMPP Directives).

cond is useful to control the flow of directive execution. All directives are normally executed but since

they are invisible to the host compiler (they are treated as comments in FORTRAN for example) they

will still be executed by HMPP even if, for example, a goto statement in the host code implicitly skips

a HMPP directive. The host code is required to set up the expression ñexprò so that if it wants to skip

an HMPP directive ñexprò evaluates to FALSE.

Á target=target_name[:target_name]* : specifies one or more targets for which the codelet

must be generated. It means that according to the target specified, if the corresponding hardware is

available AND the codelet implementation for this hardware is also available, this one will be

executed. Otherwise, the next target specified in the list will be tried.

The values of the targets can be one of the following:

o CUDA: for NVIDIA platforms.

o OPENCL: for NVIDIA and AMD ATI Stream Computing platforms.

For more information on the targets, please refer to section 6.

The examples below give example of codelet declaration:

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 23/86

1 #pragma hmpp simple1 codelet, args[outv].io=inout, target=CUDA
2 static void matvec(int sn, int sm,
3 float inv[sm], float inm[sn][sm], float *outv){
4 int i, j;
5 for (i = 0 ; i < sm ; i++) {
6 float temp = outv[i];
7 for (j = 0 ; j < sn ; j++) {
8 temp += inv[j] * inm[i][j];
9 }
10 outv[i] = temp;
11 }
12
13 int main(int argc, char **argv) {
14 int n;
15
16 #pragma hmpp simple1 callsite, args[outv].size={n}
17 matvec(n, m, myinc, inm, myoutv);
18
19 }

Listing 6 - Simple codelet declaration

1 #pragma hmpp <myGroup> simple1 codelet, args[outv].io=inout, target=CUDA
2 static void matvec(int sn, int sm,
3 float inv[sm], float inm[sn][sm], float *outv){
4 int i, j;
5 for (i = 0 ; i < sm ; i++) {
6 float temp = outv[i];
7 for (j = 0 ; j < sn ; j++) {
8 temp += inv[j] * inm[i][j];
9 }
10 outv[i] = temp;
11 }
12
13 int main(int argc, char **argv) {
14 int n;
15
16 #pragma hmpp <myGroup> simple1 callsite, a rgs[outv].size={n}
17 matvec(n, m, myinc, inm, myoutv);
18
19 }

Listing 7 - Codelet declaration inside a group

More than one codelet directive can be added to a function in order to specify different uses or different

execution contexts. However, there can be only one codelet directive for a given call site label. An example

is given below:

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 24/86

1 #pragma hmpp simple1 codelet, args[outv].io=inout, &
2 #pragma hmpp & cond ="n==1024", target=CUDA
3 #pr agma hmpp simple2 codelet, args[outv].io=inout, &
4 #pragma hmpp & cond ="n==40", target=OPENCL
5 static void matvec(int sn, int sm,
6 float inv[sm], float inm[sn][sm], float *outv){
7 int i, j;
8 for (i = 0 ; i < sm ; i++) {
09 float temp = outv[i];
10 for (j = 0 ; j < sn ; j++) {
11 temp += inv[j] * inm[i][j];
12 }
13 outv[i] = temp;
14 }
15 }
16 int main(int argc, char **argv) {
17 int n;
18
19 #pragma hmpp simple1 callsite, args[outv].size={n}
20 #pragma hmpp simple2 callsite, args[outv].size={n}
21 matvec(n, m, myinc, inm, myoutv);
22
23 #pragma hmpp simple1 release
24 #pragma hmpp simple2 release
25 }

Listing 8 - Multiple codelet declarations (stand-alone codelet context)

Note that if more than one callsite directive precedes a function call, only one of them can initiate an RPC

call. The execution policy is based on the order of the callsite directives: the directives are evaluated one

after the other sequentially. Thus, a callsite can be launched if and only if the condition of all previous

callsite directives failed and the condition of the current directive is true and the HWA is available.

Subsequent directives will be ignored once one has been executed.

The target codelet can either be produced using one of the appropriate HMPP codelet generator or hand-

written using HWA vendor programming language (i.e. CUDA for NVIDIA targets or OPENCL).

4.5.2. group directive

The group directive allows the declaration of a group of codelets. The parameters defined in this directive are

applied to all codelets belonging to the group.

The syntax of the directive is:

#pragma hmpp <grp_label > group ,[target= target_name [: target_nam e]*]]? &
#pragma hmpp & ,[cond = Ƨexprƨ]?

Where the directive parameters are:

Á <grp_label>: a unique identifier associated with all the directives that belong to the group

(definition and use). Thus, this label will have to be re-used to be able to run any codelet within a

group.

Á cond = "expr" : specifies an execution condition as a boolean C or Fortran logical expression that

needs to be true in order to start the execution of the group of codelets. If a condition is specified at

this level for a group, this one will overwrites all the codelet’s conditions of the same group. See

comments above under codelet directive for alternate applications of this cond parameter.

Á target=target_name[:target_name]* : specifies which targets to use and their order.

Means that according to the target specified, if the corresponding hardware is available AND that all

the codelet implementations for this hardware are also available, this one will be executed. Otherwise,

the next target specified in the list will be checked. For more information on targets, please refer to

chapter 6, HMPP Codelet Generators.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 25/86

4.5.3. callsite directive

The callsite directive specifies the use of a codelet at a given point in the program. Related data transfers

and synchronization points that are inserted elsewhere in the application have to use the same label.

For the callsite directive:

Á The codelet label is always mandatory

Á The group label is required if the codelet belongs to a group.

The callsite directive must be inserted immediately before the function call.

The syntax of the directive is:

In stand-alone codelet context:

#pragma hmpp codelet_label callsite [, asynchronous]?

In group of codelets context:

#pragma hmpp <grp_labe l > codelet_label callsite [, asynchronous]?

Where the directive parameters are:

Á <grp_label>: is a unique identifier associated with all the directives that belong to the group

(definition and use).

Á codelet_label : is a unique identifier associated with all the directives that belong to the same

codelet execution (definition and use).

Á asynchronous : specifies that the codelet execution is not blocking (default is synchronous). In

asynchronous mode, all the output parameters have to be downloaded using delegatedstore

directive.

A synchronize directive is mandatory before the first delegatedstore directive to insure that the

codelet execution is completed.

When an asynchronous codelet is declared, the release directive is also mandatory.

Usage examples of the callsite directive are given in Listing 8. If the condition of the directive is not

evaluated as true , or if no resources are available on the HWA, the native codelet code is used instead.

4.5.4. synchronize dir ective

The synchronize directive specifies to wait until the completion of an asynchronous callsite execution.

For the synchronize directive:

Á The codelet label is always mandatory

Á The group label is required if the codelet belongs to a group.

The syntax of the directive is:

In stand-alone codelet context:

#pragma hmpp codelet_label synchronize

In group of codelets context:

#pragma hmpp <grp_label > codelet_label synchronize

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 26/86

Where the directive parameters are:

Á <grp_label>: a unique identifier associated to all the directives that belong to the group

(definition and use).

Á codelet_label : a unique identifier associated to all the directives that belong to the same codelet

execution (definition and use).

Note that the synchronize directive is only a synchronization barrier.

4.5.5. acquire directive

An HWA may need some time to be allocated or initialized before being used by a directive set. Thus, before

the RPC call or any data uploading, an anticipated allocation of the hardware would improve the execution

time of the RPC. This anticipated allocation can be done using the acquire directive.

When an acquire directive is used, it should be placed so that it is executed before all other instructions of

the directive set. If another directive is reached before that acquire directive, then the HMPP’s runtime will

implicitly acquire the default HWA (i.e. like if the device="device_number" clause was ignored).

The syntax of the directive is:

#pragma hmpp codelet_label acquire [device="device_number"], [exclusive]

In group of codelets context:

#pragma hmpp <grp_label> acquire [device="device_number"], [exclusive]

Where:

Á device="device_number" : gives the number of the device on which all data should be allocated.

This is mainly useful when dispatching computations over multiple devices
6
.

Á exclusive : specifies that the HWA should be locked to the given codelet or grouplet until it is

unlocked with the release directive. When locked, the HWA will not be available for use by other

codelets or grouplets as well as to other threads or processes.

4.5.6. release directive

The release directive specifies when to release the HWA for a group or a stand-alone codelet (this

directive is generally used in association with the ñacquire ò directive (see the section 4.5.5 acquire

directive above). The release directive does not physically free the HWA but marks it for re-allocation.

If no release directive is specified, by default, HWA is released at program exit.

The syntax of the directive is the following:

In stand-alone codelet context:

#pragma hmpp codelet_label release [device ="device_number]

In group of codelets context:

6
 See section 4.9 - Parallel directive (Using multiple HWA devices on page 52 for more details

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 27/86

#pragma hmpp <grp_label > release [device ="device_number"]

Where the directive parameters are:

Á <grp_label>: a unique identifier associated to all the directives that belong to the group

(definition and use).

Á codelet_label : a unique identifier associated to all the directives that belong to the same codelet

execution (definition and use).

Á device= ñdevice_number ò: gives the specific number of the device to release
7
.

Listing 9 shows a usage of the release directive. The allocated HWA of the testlabel1 call site is

released after the while loop.

1
2 while (j){
3 for (k = 0 ; k < iter ; k++) {
4 #pragma hmpp testlabel1 callsite
5 simplefunc1(n, &(t1[k*n]), &(t2[k*n]), &(t3[k*n]));
6 }
7 j -- ;
8 }
9 #pragma hmpp testlabel1 release
10

Listing 9 - release directive example (case of stand-alone codelet notation)

4.5.7. allocate directive

To allocate the codelet’s arguments memory on the HWA, HMPP evaluates the sizes of the non-scalar

parameters during the execution either from the codelet’s signature, or directly from an expression given by

the user in the call site (which is not recommended as it is deprecated) (see parameter size of the

HMPP callsite directive, chapter 4.5.2).

This directive can also be used to allocate data mirrors (see section 4.8.4, Data mirroring directives)

Note that once the size has been evaluated, it cannot be changed during any execution of the codelet up to

the next free directive.

The syntax of the directive is:

In stand-alone codelet context:

#pragma hmpp codelet_label allocate [, (a rgs |data) [arg_items].size={ dimsize[,dimsize]* }]*
 [,(args|data)[arg_items].elementsize ="expr"]*
 [, (args|data)[arg_items]. device ="device_number"]*
 [, (args|data)[arg_items]. hostdata ="var_addr"]*

In group of codelets context:

#pragma hmpp <grp_label> allocate [, (args|data) [arg_ite ms].size={ dimsize[,dimsize]* }]*
 [,(args|data)[arg_items] .elementsize ="expr"]*
 [, (args|data)[arg_items]. device ="device_number"]*
 [, (args|data) [arg_items]. hostdata ="var_addr"]*

7
 See section 4.9 - Parallel directive (Using multiple HWA devices on page 52 for more details

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 28/86

Where the directive parameters are:

Á <grp_label>: a unique identifier associated to all the directives that belong to the group

(definition and use).

Á codelet_label : a unique identifier associated to all the directives that belong to the same codelet

execution (definition and use).

Á (args |data) [arg_items 8].size= { dimsize[,dimsize]* } : gives an alternate way to

evaluate the size of non-scalar codelet arguments or data mirrors. Each dimsize provides the size

for one dimension. “dimsize ” is an expression evaluable at the location of the directive (can be a

variable, a value, an expression to evaluate, etc.).

Á (args|data)[arg_items 9].elementsize=òexpr ò: specifies the element size of the allocated

memory (for data mirrors mainly).

Á (args|data)[arg_ items].device="device_number" : gives the number of the device on

which the data should be allocated. This is mainly useful when dispatching computations over multiple

devices
10

.

Á args[arg_items].hostdata="expr" : expr is an expression that gives the host address of the

data to upload.

This directive is used when the callsite specifies a size that is not known in the advancedload directive

used. The size must be specified for each dimension of the argument. Listing 10 illustrates the size

declaration for two n-by-m matrices “inm” and “outv ”.

Please, note that once a “.size ” parameter is specified for an argument in an allocate directive, this value

cannot be changed in an advancedload or delegatedstore directives.

1 #pragma hmpp ma tvec allocate, args[inm;outv].size={n,m}
2
3 while (...){
4 #pragma hmpp matvec callsite, asynchronous
5 matvec(n, m, (inc+(k*n)), inm, (outv+(k*m)));
6
7 #pragma hmpp matvec synchronize
8 #pragma hmpp matvec delegatedst ore, args[outv]
9 }/* endwhile */
10 #pragma hmpp matvec release

Listing 10 - allocate directive example (case of stand-alone codelet notation)

4.5.8. free directive

Data mirrors can be dynamically created with the Listing 9 - release directive example (case of stand-

alone codelet notation)

allocate directive, so it is also logical to allow to destroy them dynamically. This directive allows that.

8
 See section 4.3 for the syntax or arg_items .

9
 See section 4.3 for the syntax or arg_items .

10
 See section 4.9 - Parallel directive (Using multiple HWA devices on page 52 for more details

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 29/86

#pragma hmpp (<grp_label>| codelet_label |) free [,(args|data)[arg_items]

Where the directive parameters are:

Á <grp_label>: a unique identifier associated to all the directives that belong to the group

(definition and use).

Á codelet_label : a unique identifier associated to all the directives that belong to the same codelet

execution (definition and use).

Á (args|data)[arg_items 11]: gives the name of the codelet argument or the base address of the

mirror to de-allocate from the HWA.

4.6. Controlling Data Transfer between the Host CPU and the HWA

When using a HWA, an important bottleneck is often the data transfer between the HWA memory and the

host memory. To limit the communication overhead, the programmer can try to overlap data transfers with

successive executions of the same codelets by using the asynchronous property of the HWA. Two directives

can be used for that purpose:

1. The advancedload directive loads data before the remote execution of the codelet.

2. The delegatedstore directive delays the fetching of the result.

These directives are detailed in the next sections.

4.6.1. advancedload directive

Data can be uploaded before the execution of the codelet by using the advancedload directive. The syntax

is:

In stand-alone codelet context:

#pragma hmpp codelet_label advancedload
 ,args[arg_items]
 [,args[arg_items].size={ dimsize[,dimsize]* }]*
 [,args[arg_items].addr=" expr "]*
 [,args[arg_items].hostdata=" expr "]*
 [,args[arg_items].section={ [subscript_triplet ,]+ }]*
 [,asynchronous]

In group of codelets context:

#pragma hmpp <grp_label > [codelet_label]? advancedload
 ,args[arg_items]
 [,args[arg_items].size={ dimsize[,dimsize]* }]*
 [,args[arg_ items].addr=" expr "]*
 [,args[arg_items].hosdata=" expr "]*
 [,args[arg_items].section={ [subscript_triplet ,]+ }]*
 [,asynchronous]

Where the directive parameters are:

Á <grp_label>: a unique identifier associated with all the directives that belong to the group

(definition and use).

11
 See section 4.3 for the syntax or arg_items .

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 30/86

Á codelet_label : a unique identifier associated with all the directives that belong to the same codelet

execution (definition and use).

Á args[arg_items] : the name or rank (caller program) of the argument to be loaded.

Á args[arg_items].size={dimsize[,dimsize]*} : gives an alternate way to evaluate the size of

non scalar codelet arguments. Each dimsize provides the size for one dimension. This parameter

may be used when the callsite specifies a size that is not known in the advancedload directive

used.

Note: This parameter is deprecated since the size should preferably be specified though an

allocate directive.

Á args[arg_items].addr="expr" : expr is an expression that gives the host address of the data to

upload.

Note: This parameter is deprecated since it lead to some users to believe that it allowed to manipulate

the base address on the HWA’s side. Users should specify the base address with the .hostdata

parameter.

Á args[arg_items].hos tdata="expr" : expr is an expression that gives the host address of the

data to upload.

Á args[arg_items].section={[subscript_triplet,]+]* : indicates that only an array section

will be transferred to the device. See section 4.6.4 - Array section in HMPP on page 34 for further

details.

Á asynchronous 12: indicates that the transfer can be performed asynchronously, meaning that it is a

non-blocking transfer.

The advancedload directive is used on data whose the “intent ” status is “in ” or “inout ”. An error

message is generated otherwise.

1 #pragma hmpp matvec codelet, args[n;m ; inc].transfer=atcall , args[inm;outv].transfer=manual
2 void matvec(int n, int m, float *inc, float *in m, float *outv);
3
4 #pragma hmpp matvec advancedload, args[inm], args[inm].size={n,m}
5
6 while (...){
7 #pragma hmpp matvec callsite, args[inm].size={n+1,m+1}, &
8 #pragma hmpp & asynchronous
9 matvec(n, m, (inc+(k* n)), inm, (outv+(k*m)));
10
11 #pragma hmpp matvec synchronize
12 #pragma hmpp matvec delegatedstore, args[outv]
13 if (...) {
14 for (i=0; i<m; i++) {
15 inm[...] = 0.1;
16 } /* endfor */
17 #pragma hmpp matvec adv ancedload, args[inm]
18 } /* endif */
19 } /* endwhile */

Listing 11 - advancedload directive example (case of stand-alone codelet notation)

An example of the advancedload directive is given in Listing 11. The advancedload directive at line 17

loads the inm matrix after it has been modified and before the next call to the codelet

12
 Target dependent. For more details, see section 4.6.3-Asynchronous transfers on page 35.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 31/86

 Warning:

The expression used to specify the size and address of the arguments can be evaluated only when the

advancedl oad is used. However, most inconsistencies are likely to be detected at compile time. Listing 12

shows an illegal use of the advancedload directive where an error message will be issued by the compiler.

1 void foo_xxx(int* N, f loat* CA, float* CX, float* CY) {
2 ...
3 /* Illegal preloading of the "table" input data because
ʩ ÔÁÂÌÅ ÉÓ ÄÅÃÌÁÒÅÄ ÂÅÌÏ× ƽƧÔÁÂÌÅƨ ÄÅÓÉÇÎÁÔÅÄ ÈÅÒÅ ÁÓ ÁÒÇÓ ǁʣǂƾ ǉƳ
5 #pragma hmpp callfoo advancedload, args[0], &
6 #pragma hmpp & asynchronous
7 ...
8 /* Call the codelet */
9 {
10 float table[2];
11 table[0] = 3.14159265357;
12 table[1] = 2.718281;
13 #pragma hmpp callfoo callsite , asynchronous
15 foo_hmpp(table , CX, CY, SY_o ut);
16 }
17 ...
18 #pragma hmpp callfoo synchronize
19 /* Starting from there, the codelet execution has complete */
20 ...
21 #pragma hmpp callfoo delegatedstore, args[SY_out]
22 /* Starting from there, the value of SY_out has been updated */
23 ...
24 #pragma hmpp callfoo release
25 /* Starting from there, the hardware can be reallocated
26 to another codelet */
27 }

Listing 12 - Illegal use of the advancedload directive - (the actual arguments of the codelet is not in the scope of the

advancedload directive).

When the execution reaches an advancedload program point, the HWA, if available, is locked by the

HMPP runtime. When an asynchronous advancedload directive is used, the argument must not be

modified between that directive and the call of the codelet.

4.6.2. delegatedstore directive

The delegatedstore directive is the opposite of the advancedload directive in the sense that it

downloads output data from the HWA to the host. The program execution is pause until all transfers are

completed. The syntax is:

In stand-alone codelet context:

#pragma hmpp codelet_label delegatedstore
 ,args[arg_items]
 [,args[arg_items].addr=" expr "]*
 [,args[arg_items].hostdata=" expr "]*
 [,args[arg_items].section={ [subscript_triplet ,]+ }]*
 [,asynchronous]

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 32/86

In group of codelets context:

#pragma hmpp <grp_label > [codelet_label]? delegatedstore
 ,args[arg_items]
 [,args[arg_items].addr=" expr "]*
 [,args[arg_items].hostdata=" expr "]*
 [,args[arg_items].section={ [subscript_triplet ,]+ }]*
 [, asynchronous]

Where the directive parameters are:

Á <grp_label>: a unique identifier associated with all the directives that belong to the group

(definition and use).

Á codelet_label : the unique identifier associated with all the directives that belong to the same

codelet execution (definition and use);

Á args[arg_items 13] : the name (caller program) or rank of the codelet arguments to download.

Á args[arg_items].addr="expr" : expr is an expression that gives the host address of the data to

store.

Note: This parameter is deprecated since it lead to some users to believe that it allowed to manipulate

the base address on the HWA’s side. Users should specify the base address with the .hostdata

parameter of directives that support it.

Á args[arg_items].hostdata="expr" : expr is an expression that gives the host address of the

data to upload.

Á args[arg_items].section={[subscript_triplet,]+]* : indicates that only an array section

will be transferred from the device. See section 4.6.4 - Array section in HMPP on page 34 for further

details.

Á asynchronous 14: indicates that the transfer can be performed asynchronously, meaning that it is a

non-blocking transfer.

An example of the delegatedstore directive is given in Listing 13. In this example, the simple function is

called twice. Only the first call is a candidate for remote execution, so only that call is offloaded to an

accelerator or a worker thread. The value of myoutv1 is downloaded after the second call.

Note that for an asynchronous callsite a delegatedstore directive must be preceded by a

synchronize directive.

The delegatedstore directive is used on data whose the “intent ” status is “inout ” or “out ”. An error

message is generated otherwise.

#pragma hmpp simple callsite, asynchronous
 simple(n, m, myinc1,inm, myoutv1);
 simple(n, m, myinc2,inm, myoutv2);
#pragma hmpp simple synchronize
#pragma hmpp simple delegatedstore, args[outv]
#pragma hmpp simple release

Listing 13 - delegatedstore directive example

13
 See section 4.3 for the syntax or arg_items .

14
 Target dependent. For more details, see section 4.6.3-Asynchronous transfers on page 35.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 33/86

 Warnings:

You have to ensure that the argument expression stays valid in the context of the delegatedstore use.

This directive is mandatory in the context of asynchronous callsite .

4.6.3. Asynchronous transfers

Like asynchronous callsites , asynchronous transfers are useful to overlap operations on the HWA with

operations on the host.

In OpenCL, no specific allocation functions are required to ensure asynchronous operations. Asynchronous

behavior depends on how the OpenCL library has been implemented by the vendor.

Asynchronous Loads

To enable asynchronous loads, the asynchronous clause of the advancedload directive must be used.

The semantic of the operation is defined as follows:

Á The load operation starts when the directive is reached. As a consequence, transferred arguments

must not be modified during the whole operation.

Á The HMPP runtime automatically waits for pending transfers when a callsite directive is reached.

Á The new waitload directive can
15

 be used to wait for one or more load operations to complete:

#pragma hmpp waitload [,args[arg_items]] *

The asynchronous clause does not guarantee real non-blocking and overlapping transfers. The current

implementation is subject to the target limitations.

Asynchronous Stores

To enable asynchronous stores, the asynchronous clause of the delegatedstore directive must be used.

The semantic of the operation is defined as follows:

Á The store operation starts when the directive is reached. As a consequence, transferred arguments

must not be modified or read during the whole operation.

Á The HMPP runtime automatically waits for pending transfers when a release directive is reached.

Á The waitst ore directive should
16

 be used to wait for one or more store operations to complete:

#pragma hmpp waitstore [,args[arg_items]] *

The asynchronous clause does not guarantee real non-blocking and overlapping transfers. The current

implementation is subject to the target limitations and constraints.

15
 In the absence of waitload directive, the next callsite affected by this load will implicitly wait for it to

complete if needed.

16
 In the absence of waitstore , your code may yield non reproducible results since the content of the

downloaded variable may or may not have arrived on the host when you read it.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 34/86

4.6.4. Array section in HMPP

An array section is a selected portion of an array. It designates a set of elements from an array.

The array sections can be used in order to optimize data transfers between the host and the HWA in some

cases where it is not necessary to transfer the whole array.

This parameter can be used with both the advancedload and the delegatedstore directives (see

respectively chapter 4.6.1 and 4.6.2).

The syntax of this parameter is of the form:

args[arg_item].section={ [subscript_triplet ,]+ } *

Where

Á arg_item designates an array;

Á subscript_triplet consists of two subscripts and a stride and defines a sequence of numbers

corresponding to array element positions along a single dimension.

The notation for the subscript_triplet is: “start:end:stride ” where:

o start, end : are subscripts which designate the first and last values of a dimension.

o stride : is a scalar integer expression that specifies how many subscript positions to count

to reach the next selected element. If the stride is omitted, it has a value of 1. The stride

must be positive.

The subscript_triplet must be specified for each dimension of the array.

 Warnings:

Array sections must be used carefully in HMPP applications. Indeed, the use of a stride greater than 1 may

results to a slowdown of the application when lots of data are transferred. In such cases, the transfer of the

whole array still remains the best solution.

To get performance, users should not forget the constraints inherent in data layout:

 - They should favor the transfer of contiguous data;

- They should favor data locality in array section (means for example to transfer data by column for

FORTRAN and by row for C language instead of the opposite).

Case of not normalized arrays

By default HMPP makes the assumption that the arrays are normalized, meaning that all the dimensions of

the arrays:

Á Start from 0, in C language;

Á Start from 1, in FORTRAN language;

In cases where at least one of an array’s dimensions is not normalized, the shape must be specified using

the following notation:

args[arg_item].section={ [subscript_triplet ,]+ } * of { [shape_couple ,]+ }

Where shape_couple : designates the first and the last values in the sequence of indices for a dimension.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 35/86

Listing 14 illustrates the approach. In the delegatedStore directive, the array section requests the transfer

of the contiguous data ñu[0:1024]ò of a one dimension array ñuò declared with the

ñ(-1024:1024)ò array shape.

ƛ
INTEGER, PARAMETER :: M=4
INTEGER, PARAMETER :: Ns=- 1024
INTEGER, PARAMETER :: Ne=+1024
REAL :: u(Ns:Ne) , v(Ns:Ne)
ƛ
! - Transfer of the whole array
!$HMPP <conv> advancedload, args[f1::A]

! - callsite
!$HMPP <conv> f1 callsite
call doubleconv1d(Ne - Ns,M,u,v,coef)
ƛ
! - callsite
!$HMPP <conv> f2 callsite
call conv1d(Ne - Ns,M,u,coef)
ƛ

! - get only the modified data on the host
!$HMPP <conv> delegatedstore, args[f1::A],args[f1::A].section={ 0:Ne} of { Ns:Ne }
.
.
.

! ------------
! Codelet declaration
! --------------
!$HMPP <conv> f1 codelet
 SUBROUTINE doubleconv1d(n,iter,A,B,C)
.
.
.

Listing 14 - Array section specified with a shape (extract) (FORTRAN)

Use of array sections in HMPP, examples

Below are a few examples provided to illustrate the use of the ñ.sectionò parameter.

INTEGER, PARAMETER :: size = 3661
INTEGER*4, dimension(size,size) :: tab
ƛ
 !$hmpp <Mygroup> get_col advancedload, args[tab], args[tab].sec tion={1:size,1:1}
ƛ
 !$hmpp <group> get_col callsite
 call put(size, tab)
ƛ
!$hmpp <Mygroup> get_col codelet, args[tab].transfer=atcall
SUBROUTINE put(size, tab)
ƛ
END SUBROUTINE put

Listing 15 - Array section in advancedload directive - Transfer of 1 column (FORTRAN)

On Listing 15, through the use of an advancedload directive, the user transfers the first column, and on

Listing 16 the first row of the array ñtabò. The advancedl oad parameter is set to true at the callsite

level to notify that the transfer of the data has already been done.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 36/86

INTEGER, PARAMETER :: size = 3661
INTEGER*4, dimension(size,size) :: tab
ƛ
 !$hmpp <Mygroup> get_col advancedload, args[tab], args[tab].sect ion={1:1,1:size}
ƛ
 !$hmpp <group> get_col callsite
 call put(size, tab)
ƛ
!$hmpp <Mygroup> get_col codelet, args[tab].transfer=atcall
SUBROUTINE put(size, tab)
ƛ
END SUBROUTINE put

Listing 16 - Array section in advancedload directive - Transfer of 1 row (FORTRAN)

4.7. Transfer policies

By default, all data transfers are being done implicitly by HMPP. This has the great advantage that a code

can be offloaded to a GPU with the blink of an eye since all you need is to put two directives on your code,

namely the codelet/callsite directives.

However, once you want to finely control transfers, be it to remove redundant transfers, or to leave some

GPU data untouched, you need to add directives options to explicitly disable implicit transfers and add

explicit transfers where needed.

This policy, thereafter referred as the legacy policy, not only makes it harder than necessary to change the

default behavior, but also leads to code that may be hard to review, as implicit and explicit operations are

mixed.

With HMPP3, several policies are available to simplify the transition from a basic, and less efficient, usage of

HMPP directives, to a more efficient, advanced usage.

4.7.1. atcall transfer policy

This transfer policy is the easiest to understand, and the easiest to use. All transfers are implicitly performed

at the callsite.

At the callsite are performed the following operations:

Á Update of the pointer to the host data according to the argument passed to the callsite.

Á Transfer of the data zone from the host to the accelerator if the parameter has IN or INOUT intent.

Á Execution of the codelet on the accelerator

Á Transfer of the data zone from the accelerator to the host if the parameter has OUT or INOUT intent.

In the example below, the atcall transfer policy is used instead of the usual, ñlegacyò transfer policy.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 37/86

#pragma hmpp foo codelet, target=CUDA, args[a].io=inout , args[*].transfer=atcall
void foo(int a[10], const int b[10]) {
 for (int i = 0; i < 10; ++i)
 a[i] *= b[i];
}

int A[10], B[10];

int main(void) {
 #pragma hmpp foo allocate

 for (int j = 0; j < 2; ++j) {
 #pragma hmpp foo callsite
 foo(A, B);
 }

 #pragma hmpp foo release
 return 0;
}

Listing 17 - atcall transfer policy example

The following transfers will be performed at the execution:

Á callsite: AČa, BČb, Aċa

Á callsite: AČa, BČb, Aċa

Note that this pattern of transfers corresponds to the pattern which would be obtained with the ñlegacyò

policy.

The use of the wildcard notation ñ*ò means that all the parameters are concerned by this property. In some

situations, only some parameters can be specified.

This policy forbids the following directive options to be used:

Á .addr

Á .advancedload

Note that these directives are forbidden on arguments that use the atcall transfer policy since that policy

tells HMPP to always transfer all arguments. Therefore, using these directive options doesn’t make sense.

What’s more, this policy should not
17

 be used with any advancedload or delegatedstore directives.

If they are used anyway, the pattern of transfer when the callsite is reached will remain the same, and

additional advancedload or delegatedstore directives will just generate extraneous transfers.

4.7.2. atfirstcall transfer policy

This transfer policy allows transfers savings by leaving constant codelet arguments on the HWA’s memory.

This policy should be used instead of the .const directive attribute, that has been deprecated since HMPP-

3.0.

17
 Whether the HMPP compiler will accept advancedload or delegatedstore directives on parameters that

use the atcall policy is subject to changes.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 38/86

#pragma hmpp foo codelet, target=CUDA, args[a].io=inout, args[b].transfer=atfirstcall, &
#pragma hmpp & args[a].transfer=atcall
void foo(int a[10], const int b[10]) {
 for (int i = 0; i < 10; ++i)
 a[i] *= b[i];
}

int A[10], B[10];

int main(void) {
 #pragma hmpp foo allocate

 for (int j = 0; j < 2; ++j) {
 #pragma hmpp foo callsite
 foo(A, B);
 }

 #pragma hmpp foo release
 return 0;
}

Listing 18 - atfirstcall transfer policy example

4.7.3. manual transfer policy

This transfer policy is meant to be used for advanced users, to finely control transfers. No transfer is

automatically performed at the callsite.

At the callsite are performed the following operations:

Á Update of the pointer to the host data according to the argument passed to the callsite.

Á No transfer from the host to the accelerator.

Á Execution of the codelet on the accelerator.

Á No transfer from the accelerator to the host.

Transfers will only be performed if advancedload or delegatedstore directives are used before or after

the callsite .

If an advancedload is reached before the host pointer is known, this will trigger a runtime error.

To let the host pointer be known, the directive option .hostdata must be used.

In the example below, the manual transfer policy is used to optimize transfers.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 39/86

#pragma hmpp foo codelet, target=CUDA, args[a].io=inout, args[*].transfer=manual
void foo(int a[10], const int b[10]) {
 for (int i = 0; i < 10; ++i)
 a[i] *= b[i];
}

int A[10], B[10];

int main(void) {
#pragma hmpp foo allocate, args[a].hostdata="A", args[b].hostdata="B"

 #pragma hmpp foo advancedload, args[a, b]

 for (int j = 0; j < 2; ++j) {
 #pragma hmpp foo callsite
 foo(A, B);
 }

 #pragma hmpp foo delegatedstore, args[a]

 #pragma hmpp foo release
 return 0;
}

Listing 19 - manual transfer policy example

The following transfers will be performed at the execution:

4.7.4. automatic transfer policy

Transfer clause (codelet and region directives)

The automatic management of data transfers policy is intended to improve the basic performance of HMPP

applications.

Quite often, data used in the codelet may not need to be synchronized between the host and the GPU,

typically:

Á If the host doesn’t use the output of the codelet (either to read it or to modify it) until after the loop

Á If some of the arguments are never modified (constant arrays, array bounds, …)

¶ advancedload: A Ča, B Čb

¶ callsite:

¶ callsite:

¶ delegatedstore: A ċa

¶ release

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 40/86

For example:

#pragma hmpp cod1 codelet, target=CUDA, args[c].io=inout, &
#pragma hmpp & args[*].transfer=auto
void k(int n,
 float alpha, float beta,
 const float a[n*n], const float b[n*n],
 float c[n*n]) {
ƛ
}

Listing 20 - automatic transfer clause in codelet definition

When “auto ” transfer mode is activated, read and write accesses to the codelet parameters are

instrumented around the callsite to trigger an automatic transfer
18

. This is done only when a modified version

of an argument is needed on the host or on the GPU.

It is still possible to use advancedLoad and delegatedStore pragmas to force transfers.

Currently a parameter is automatically updated in any of the following cases:

Á A parameter is written on the host.

Á A function call is performed near the callsite, inside the loop.

Á At the beginning or the end of the current function containing the codelet.

Automatic transfer cannot be used with asynchronous codelet execution.

Implications of automatic transfers on codeletôs parameters

Since automatic transfers work by instrumenting the program statements around the callsite, codelet

argument’s size are also inferred from the callsite’s context (NB: without automatic transfers, codelet

arguments’s size is inferred from the codelet’s signature).

In practice, that means that in the following FORTRAN program, it is required to specify the size of the

codelet argument named ñtò since the array passed at the callsite, ñtabò, is a FORTRAN allocatable

array, which size is not specified at the declaration of this array.

18
 See section 2748416.0.1073774592 Implications of automatic transfers on codelet’s parameters for

noteworthy implications of using automatic transfers on your HMPP program.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 41/86

!$ hmpp <g> group, target=cuda

program tr
 integer, dimension(:), allocatable :: array
 integer :: size
 allocate(array(size))

 !$hmpp <g> allocate , args[s::t].size={size}

 !$ hmpp <g> s callsite
 call sub(size, array)

contains

 !$ hmpp <g> s codelet, args[*].transfer=auto
 subroutine sub(n, t)
 implicit none
 integer :: n
 integer, dimensi on(n) :: t
 !!
 end subroutine sub

end program tr

If the allocate .size option was omitted, the following error would be issued:
hmpp: [Error HP0946] tr.f90:8: Cannot deduce 'addr' for the parameter 'n' at rank #0 in codelet
's' of directive set 'g'
hmpp: [Error HP0944] tr.f90:8: Cannot deduce 'size' for the parameter 't' at rank #1 in codelet
's' of directive set 'g'

Likewise, in following program in C language, it is required to specify the size of the codelet argument named

ñtò since the array passed at the callsite, ñptò, is a C pointer, which pointed memory region size is not

specified at the declaration of this pointer.

#include <stdlib.h>
#pragma hmpp <g> group, target=CUDA
#pragma hmpp <g> s codelet, args[*].transfer=auto
void sub(int n, int t[n]) {
 /* */
}

int main (void) {
 const int size = 10;
 int *pt = NULL;
 pt = calloc(size, sizeof(int));

#pragma hmpp <g> allocate , args[s::t].size={size}

#pragma hmpp <g> s callsite
 sub(size, pt);
 return 0;
}

If the allocate .size option was omitted, the following error would be issued:
hmpp: [Error HP0946] tr.c:13: Cannot deduce 'addr' for the parameter 'n' at rank #0 in codelet
's' of directive set 'g'
hmpp: [Error HP0944] tr.c:13 : Cannot deduce 'size' for the parameter 't' at rank #1 in codelet
's' of directive set 'g'

4.7.5. disregard directive

If a callsite is surrounded by functions that the user knows they have no side effects on the codelet

parameters (printer or timing functions for instance), automatic transfers are limited. Modification of codelet’s

parameters by functions is not detected by HMPP.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 42/86

This limitation can be removed with the disregard directive associated to the function calls. The syntax is:

#pragma hmpp [< group_labe l >]? [codelet_label] disregard args[arg_items]

For block of statements (case of FORTRAN for example), the following directives are also available:

To mark the beginning of the block to ignore:

#pragma hmpp [< group_label >]? [codelet_label] begindisregard args[arg_items]

To mark the end of the block to ignore:

#pragma hmpp [< group_label >]? [codelet_label] enddisregard args[arg_items]

In FORTRAN language, the equivalent of the disregard directive for a block of statements is:

!$hmpp [< group_label >]? [codelet_label] begindisregard

FORTRAN STATEMENTS

!$hmpp [< group_label >]? [codelet_label] enddisregard

This directive allows to inhibit data transfer from or to the GPU.

So for example, if we consider the following codelet definition where only matrix c has an inout status

 !$HMPP <myGRP> sgemm codelet, target=CUDA, args[c].io=inout
 SUBROUTINE sgemm(n,alpha,a,b,beta,c)
 IMPLICIT NONE
 INTEGER, INTENT(IN) :: n
 REAL, INTENT(IN) :: alpha,beta
 REAL, INTENT(IN) : : b(n,n),a(n,n)
 REAL, INTENT(INOUT) :: c(n,n)
 ƛ

Listing 21 - disregard directive example - codelet definition (extract)

And if we consider the following code (we assume here that there are no other HMPP directives in the

application):

 !$HMPP <MyGrp> allocate, args[sgemm::a;sgemm::b;sgemm::c].size={N,N}

 DO i=1,2
 !$HMPP <MyGrp> sgemm callsite
 call sgemm(N,alpha,a,b,beta,c_hmpp)
 END DO

 !$HMPP <MyGrp> release

Listing 22 - disregard directive example - callsite level

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 43/86

This leads to the following output
19

:

...group "myGRP", codelet "sgemm": Allocating input: arg[n].size=0(scalar) arg[n].const=0
...group "myGRP", codelet "sgemm": Allocating input: arg[alpha].size=0(scalar) arg[alpha] .const=0
...group "myGRP", codelet "sgemm": Allocating input: arg[a].size=[128][128] arg[a].const=0
...group "myGRP", codelet "sgemm": Allocating input: arg[b].size=[128][128] arg[b].const=0
...group "myGRP", codelet "sgemm": Allocating input: arg[beta].si ze=0(scalar) arg[beta].const=0
...group "myGRP", codelet "sgemm": Allocating inout: arg[c].size=[128][128] arg[c].const=0
...group "myGRP", codelet "sgemm": Writing data to HWA: arg[n].size=0(scalar) arg[n].async=0
...group "myGRP", codelet "sgemm": Writin g data to HWA: arg[alpha].size=0(scalar)
arg[alpha].async=0
...group "myGRP", codelet "sgemm": Writing data to HWA: arg[a].size=[128][128] arg[a].async=0
...group "myGRP", codelet "sgemm": Writing data to HWA: arg[b].size=[128][128] arg[b].async=0
...group "myGRP", codelet "sgemm": Writing data to HWA: arg[beta].size=0(scalar)
arg[beta].async=0
...group "myGRP", codelet "sgemm": Writing data to HWA: arg[c].size=[128][128] arg[c].async=0
...group "myGRP", codelet "sgemm": Starting codelet: async=0
...group " myGRP", codelet "sgemm": Reading data from HWA: arg[c].size=[128][128] arg[c].async=0
...group "myGRP", codelet "sgemm": Writing data to HWA: arg[n].size=0(scalar) arg[n].async=0
...group "myGRP", codelet "sgemm": Writing data to HWA: arg[alpha].size=0(sca lar)
arg[alpha].async=0
...group "myGRP", codelet "sgemm": Writing data to HWA: arg[a].size=[128][128] arg[a].async=0
...group "myGRP", codelet "sgemm": Writing data to HWA: arg[b].size=[128][128] arg[b].async=0
...group "myGRP", codelet "sgemm": Writing d ata to HWA: arg[beta].size=0(scalar)
arg[beta].async=0
...group "myGRP", codelet "sgemm": Writing data to HWA: arg[c].size=[128][128] arg[c].async=0
...group "myGRP", codelet "sgemm": Starting codelet: async=0
...group "myGRP", codelet "sgemm": Reading dat a from HWA: arg[c].size=[128][128] arg[c].async=0

Figure 6 - HMPP output execution with all the transfers

On Figure 6
20

, it should be noticed that at each iteration of the loop:

Á All the input arguments are transferred from the CPU to the GPU (data in green);

Á All the output arguments are transferred from the GPU to the CPU (data in blue).

If we modify now Listing 21, by adding the “auto ” transfer clause as shown on Listing 23.

 !$HMPP <MyGrp> sgemm codelet, target=CUDA, args[c].io=inout, args[*].transfer=auto
 SUBROUTINE sgemm(n,alpha,a,b,beta,c)
 IMPLIcIT NONE
 INTEGER, INTENT(IN) :: n
 REAL, INTENT(IN) :: alpha,beta
 REAL, INTENT(IN) :: b(n,n),a(n,n)
 REAL, INTENT(INOUT) :: c(n,n)
 ƛ

Listing 23 - Codelet definition with automatic data transfer validated

The addition of this clause leads now to the following HMPP execution:

19
 Got by setting HMPP_VERBOSITY=9

20
 Some details of the HMPP messages have been removed in order to improve the readability of the

example.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 44/86

...group "mygrp": Allocated 'NVIDIA GPU (CUDA Runtime 3.1)'.

...group "mygrp", codelet "sgemm": Allocating input: arg[n].size=0(scalar) arg[n].const=0

...group "mygrp", codelet "sgemm": Allocating input: arg[alpha].size=0(scalar) arg[alpha].const=0

...grou p "mygrp", codelet "sgemm": Allocating input: arg[a].size=[128][128] arg[a].const=0

...group "mygrp", codelet "sgemm": Allocating input: arg[b].size=[128][128] arg[b].const=0

...group "mygrp", codelet "sgemm": Allocating input: arg[beta].size=0(scalar) arg [beta].const=0

...group "mygrp", codelet "sgemm": Allocating inout: arg[c].size=[128][128] arg[c].const=0

...group "mygrp", codelet "sgemm": Writing data to HWA: arg[n].size=0(scalar) arg[n].async=0

...group "mygrp", codelet "sgemm": Writing data to HWA: a rg[alpha].size=0(scalar)
arg[alpha].async=0
...group "mygrp", codelet "sgemm": Writing data to HWA: arg[a].size=[128][128] arg[a].async=0
...group "mygrp", codelet "sgemm": Writing data to HWA: arg[b].size=[128][128] arg[b].async=0
...group "mygrp", codele t "sgemm": Writing data to HWA: arg[beta].size=0(scalar)
arg[beta].async=0
...group "mygrp", codelet "sgemm": Writing data to HWA: arg[c].size=[128][128] arg[c].async=0
...group "mygrp", codelet "sgemm": Starting codelet: async=0
...group "mygrp", codelet "sgemm": Starting codelet: async=0
...group "mygrp", codelet "sgemm": All inputs may not be transfered to HW.
...group "mygrp", codelet "sgemm": Reading data from HWA: arg[c].size=[128][128] arg[c].async=0

Figure 7 - HMPP output execution ï effect of the automatic clause on codeletôs arguments

Figure 7 shows that all the useless intermediate data transfers have been removed between the two

executions of the codelet.

Now if we consider the following piece of code, with the introduction of two user’s function calls (gettime).

DO i=1,2
 start_time = getTime()

 !$HMPP <MyGrp> sgemm callsite
 caLL sgemm(N,alpha,a,b,beta,c_hmpp)

 stop_time = getTime()

 END DO

Listing 24 - disregard directive example - callsite level, introduction of two function calls

These functions may have some effects on the arguments. Without any additional information, HMPP will do

this assumption. So, in this context, the execution will be identical to those illustrated Figure 6.

If you want to specify that these functions have no side effect on the codelet’s arguments you can for

example:

Á Add a disregard directive before each function call in order to indicate to HMPP that these function

calls must not be took into account in the data flow computation. Listing 25 illustrates a such approach

 DO i=1,2
 !$HMPP <MyGrp> sgemm disregard, args[*]
 start_time = getTime()

 !$HMPP <MyGrp> sgemm callsite
 caLL sgemm(N,alpha,a,b,beta,c_hmpp)

 !$HMPP <MyGrp> sgemm disregard, args[*]
 stop_time = getTime()

 END DO

Listing 25 - disregard directive applied on statements

Or you can also add begindisregard and enddisregard directives as Listing 26. These directives

indicate to HMPP that all the statements include between the begin and the end directives must be ignored

by the analysis.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 45/86

 !$HMPP <MyGrp> sgemm begindisregard, args[*]

 DO i=1,2
 start_time = getTime()

 !$HMPP <MyGrp> sgemm callsite
 caLL sgemm(N,alpha,a,b,beta,c_hmpp)

 stop_time = getTime()

 END DO

 !$HMPP <MyGrp> sgemm enddisregard

Listing 26 - disregard directive applied on a block of statements

In both cases (Listing 25 and Listing 26), the execution of their code leads to the transfers shown on Figure

7.

4.8. HMPP data declaration

4.8.1. map directive

In a group, arguments from different codelets may share resources on the device: for instance if they refer to

the same table or if one uses the result of another one. In these cases, HMPP can take advantage of using

the same memory space on the device for all these arguments.

The map directive provides this feature: it maps several arguments on the device.

The notation is the following:

#pragma hmpp <grp_label > map, args[arg_items]

The Listing 27 au-dessous illustrates the use of the map directive (in same color the “mapped” variables):

Á Line 2: is the definition of a group of codelets;

Á Line 3: illustrates the mapping of respectively two variables named “v1” defined in two different

codelets names “init ” and “dotSum”.

Á Line 4: illustrates the mapping of respectively two variables named “lxp ” and “v2” defined in two

different codelets names “init ” and “dotSum”.

From HMPP point of view, the introduction of these two “map” directives means that:

Á The two variables “v1ò will be seen as the same on the device;

Á The two variables “lxp ” and “v2” will be seen as the same;

Warning:

The IO status may be still different for each directive because they each refer to different particular

callsite : this will determine the transfer requirements. However the union set of IO directives will define

the way the map memory will be allocated!

Example: in a map: a, b

- If ñaò is óinô in codelet F1

- If ñbò is óoutô in codelet F2

- Then the memory allocation will be inout (only one for both).

- ñaò will be loaded before F1

- ñ bò will be downloaded after F2

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 46/86

1 ƛ
2 #pragma hmpp <myGroup> group, target=CUDA // definition of the group

3 #pragma hmpp <myGroup> map, args[init::v1; dotSum::v1]

4 #pragma hmpp <myGroup> map, args[init::lxp;dotSum::v2]
5
6 #pragma hmpp <myGroup> init codelet, args[v1].io=out

7 void init(int n, float v1[n], float initval , float lxp[n]) {
8 int j;
9 for (j = 0 ; j < n ; j++)
10 v1[j] = initval + l xp[j];
11 ƛ
12 }
13
14 #pragma hmpp <myGroup> dotSum codelet, args[v1].io=inout

15 void dotSum(int n, float v1[n], float v2[n])
16 {
17 int j;
18 for (j = 0 ; j < n ; j++)
19 v1[j] += v2[j];
20 }

Listing 27 - map directive example

To be able to be mapped, the variables must:

Á have the same dimensions;

Á have the same type.

The example given below shows an illegal map association between two array variables and a scalar. In

such situations HMPP will generate an error message.

1 ƛ
2 #pragma hmpp <myGroup> group, target=CUDA

3 #pragma hmpp <myGroup> map, args[dotSum::v1;init::n]
4
5 #pragma hmpp <myGroup> init codelet, args[v1].io=out

6 void init(int n , float v1[n]) {
7 int j;
8 float val = 0.0;
9 for (j = 0 ; j < n ; j++)
10 v1[j] = val++;
11 }
12
13 #pragma hmpp <myGroup> dotSum codelet, args[v1].io=inout

14 void dotSum(int n, float v1[n], float v2[n])
15 {
16 int j;
17 ƛ
}

Listing 28 - Illegal map directive usage

4.8.2. mapbyname directive

This directive is quite similar as the “map” directive except that the arguments to be mapped are directly

specified by their name. So, the notation is the following:

#pragma hmpp <grp_label > mapbyname [, variableName]+

To be able to be mapped, the same constraints as for the map directive are applied, the variables must

have:

Á the same dimensions;

Á the same type.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 47/86

Listing 29 shows a use of this directive. In the group ñ<fxx_myGroup>ò all the variables called:

Á “xmin” will be mapped together;

Á “xmax” will be mapped together;

Á etc.

!$hmpp < fxx_myGroup> mapbyname, xmin , xmax, ymin , ymax, zmin , zmax

Listing 29 - mapbyname directive example

The “mapbyname” directive is equivalent to multiple “map” directives.

!$hmpp < fxx_myGroup> mapbyname, xmin , xmax

Is equal to:

!$hmpp < fxx_myGroup> map, args[*:: xmin]
!$hmpp < fxx_myGroup> map, args[*:: xmax]

4.8.3. resident directive

The resident directive declares some variables as global within a group. Those variables can then be directly

accessed from any codelet belonging to the group. In practice, it means that those variables will reside in the

HWA memory. So they can be seen as “resident ” on the HWA for the considered group.

This directive applies to the declaration statement just following it in the source code.

The syntax of this directive is:

#pragma hmpp <grp_label > resident
 [, args[:: var_name].io= [in | out | inout | none]]*
 [, args[:: var_name].size={ dimsize[,dimsize]* }]*

Where the directive parameters are:

Á <grp_label> : a unique identifier associated to all the directives that belong to the group (definition

and use).

Á args[::var_name].io=in|out|inout | none : indicates that the specified variables are either

input, output, both or unused. By default, unqualified variables are INOUT.

The specification of this parameter drives the data transfers between the host and the HWA.

Furthermore, it allows some additional checks about the use of the data in HMPP applications (see

chapter 4.5.1 for more details about the management of this property).

Á args[::var_name].size={dimsize[,dimsize]*}: specifies the size of a non scalar

parameter (an array). Each dimsize provides the size for one dimension. The set is evaluated at

runtime by an allocate directive, or by all callsite and advancedload directives within the

group.

The notation ñ::var_nameò with the prefix ñ::ò, indicates an application’s variable declared as resident.

Note that, unlike input or output codelet arguments, resident variables are never implicitly transferred to and

from the HWA. Explicit advancedload and delegatedstore directives are required when necessary.

The Listing 30 illustrates the use of this directive. The corresponding results are presented on Listing 31.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 48/86

#include <stdio.h>
#define SIZE 10240

ƳƳ ÇÒÏÕÐ ÄÅÃÌÁÒÁÔÉÏÎƚ 4ÈÅ ÇÒÏÕÐ ÌÁÂÅÌ ÉÓ ƧÍÙ'ÒÏÕÐƨ
#pragma hmpp <myGroup> group, target=CUDA

// resident data declaration inside the group "MyGroup"
#pragma hmpp <myGroup> resident , args[: :tab_init_on_hwa].io=out &
#pragma hmpp & , args[::tab_init_on_host].io=in
float tab_init_on_hwa [SIZE], tab_init_on_host[SIZE];

// declaration of the codelet "init" inside the group "MyGroup"
#pragma hmpp <myGroup> init codelet
void init (int n) {
 int j;
 float val = 0.0;
 for (j = 0 ; j < n ; j++) tab_init_on_hwa[j] = val++ ;
}

// declaration of the codelet "dotSum" inside the group "MyGroup"
#pragma hmpp <myGroup> dotSum codelet
void dotSum(int n)
{
 int j;
 for (j = 0 ; j < n ; j++) tab_init_on_hwa[j] += tab_init_on_host[j];
}

int main(int argc, char **argv)
{
 int i, m=SIZE;
 float val = 0.0;

 for (i = 0 ; i < m ; i++) tab_init_on_host[i] = val++*2;

#pragma hmpp <myGroup> allocate // allocation of the group on the HWA

/ / transfer onto the HWA of the variable tab_init_on_host
#pragma hmpp <myGroup> advancedload, args[::tab_init_on_host]

#pragma hmpp <myGroup> init callsite // call to the "init" codelet
 init(m);

#pragma hmpp <myGroup> dotSum callsite // ca ll to the "dotSum" codelet
 dotSum(m);

 //transfer of the data from the HWA to the CPU
#pragma hmpp <myGroup> delegatedstore, args[::tab_init_on_hwa]

#pragma hmpp <myGroup> release // release of the HWA

 // short display of the results
 for (i = 0 ; i < m ; i=i+2) {
 if ((i <= 5) || (i >= m - 5))
 printf ("tab_init_on_hwa[%d]= %4.2f \ t \ t tab_init_on_hwa[%d]= %4.2f \ n",
 i, tab_init_on_hwa[i], i+1, tab_init_on_hwa[i+1]);
 }

 return 0;}

Listing 30 - resident directive example

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 49/86

$ hmpp gcc MyProgramWithResident.c - o MyProgramWithResident.hmpp
$./MyProgramWithResident.hmpp

tab_init_on_hwa[0]= 0.00 tab_init_on_hwa[1]= 3.00
tab_init_on_hwa[2]= 6.00 tab_init_on_hwa[3]= 9.00
tab_init_on_hwa[4]= 12.00 tab_init_on_hwa[5]= 15.00
tab_init_on_hwa[10236]= 30708.00 tab_init_on_hwa[10237]= 30711.00
tab_init_on_hwa[10238]= 30714.00 tab_init_on_hwa[10239]= 30717.00

$ gcc MyProgramWithResident.c - o MyProgramWithResident.gcc
$./MyProgramWithResident.gcc
t ab_init_on_hwa[0]= 0.00 tab_init_on_hwa[1]= 3.00
tab_init_on_hwa[2]= 6.00 tab_init_on_hwa[3]= 9.00
tab_init_on_hwa[4]= 12.00 tab_init_on_hwa[5]= 15.00
tab_init_on_hwa[10236]= 30708.00 tab_init_on_hwa[10237]= 30711.00
tab_init_on_hwa[10238]= 3 0714.00 tab_init_on_hwa[10239]= 30717.00

Listing 31 - Results of the application described Listing 30 (with hmpp and usual compiler like gcc)

4.8.4. Data mirroring directives

HMPP currently defaults to “buffer” memory mode. Its main purpose is to save HWA memory, as its memory

is typically much more limited than main memory’s. There are a few downsides to “buffer” memory mode,

such as:

Á the fact that codelet name arguments must be used in all directives arguments (including at

callsite),

Á it makes data sharing between callsites very verbose and error prone (see the map directive and

Listing 28 - Illegal map directive usage

Á mapbyname directive)

Thanks to data mirroring, it is possible to refer to arguments with their host address, which allows to get rid of

the two above mentioned disadvantages of “buffer” memory mode.

Data mirroring however requires data mirrors to be declared and allocated before being used.

The following example shows how, thanks to mirroring, it is now possible to decouple the pre-loading of data

on the GPU with the call of the offloaded routine.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 50/86

// mirror clause specifies that arguments will be manipulated as m irrored data
#pragma hmpp f codelet, target=CUDA, args[*].mirror , args[*].transfer=manual
void f(float a[100], float b[100]) {
 int i;
 for (i = 0; i < 100; ++i) {
 a[i] = a[i] + (b[i]);
 }
}

int main(void) {
 float x[3][100];
 int i, j;
#pragma hmpp f allocate

 for (i = 0; i < 3; ++i) {
 // Declaration, then allocation of data mirrors
 #pragma hmpp f new, data["x[i]"]
 #pragma hmpp f allocate, data["x[i] "], data["x[i]"].size={100}, &
 #pragma hmpp & data["x[i]"].elementsize="sizeof(float)"
 // upload of data based on the address
 #pragma hmpp f advancedload, data["x[i]"]
 }
 for (i = 0; i < 3; ++i) {
 for (j = 0; j < 3; ++j) {
 if (i != j) {
 #pragma hmpp f callsite
 f(x[i], x[j]);
 }
 }
 }
 for (i = 0; i < 3; ++i) {
 // download of data based on the address
 #pragma hmpp f delegatedstore, data["x[i]"]
 #pragma hmpp f free, data["x[i]"] // dea llocation of data mirror
 #pragma hmpp f delete, data["x[i]"] // mirror descriptor release
 }
#pragma hmpp f release
 return 0;
}

Listing 32 - An example of data mirroring in C

As you can see, using mirrors requires the declaration and allocation of mirrors prior to being used. The first

loop allocates several mirrors on the HWA from different lines of the array ñxò, and then uploads the

mirrored data to the HWA with an advancedload directive.

Arguments are now referred with their host address such as data["x[i]"] rather than their name in the

codelet they belong to.

HMPP’s runtime ensures that the offloaded function uses the right data simply by comparing the address of

callsite arguments with previously declared mirrors.

The verbose log that corresponds to the execution of the above C example is listed hereinafter.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 51/86

Starting HMPPRT logging...
[0.214183] (1) INFO : -- > allocate <f> at mir ror.c:12
[0.214838] (1) INFO : - Acquisition of grouplet 'f' (1 CUDA devices)
[0.217071] (1) INFO : 0) Tesla T20 Processor
[0.217169] (1) INFO : < -- allocate <f> at mirror.c:12
[0.217339] (2) INFO : -- > new, data <f> at mi rror.c:16
[0.217451] (2) INFO : < -- new, data <f> at mirror.c:16

[... more allocations]

[0.299332] (1) INFO : -- > advancedload, data <f> at mirror.c:20
[0.299432] (1) INFO : - Upload mirror 0x7fff60d964a0 (on device 0)
[0.29960 0] (1) INFO : < -- advancedload, data <f> at mirror.c:20

[... more uploads ...]

[0.299732] (3) INFO : -- > callsite <f> at mirror.c:25
[0.299790] (3) INFO : - Call codelet 'f' (on device 0)
[0.391331] (3) INFO : < -- callsite <f> at m irror.c:25
[0.391681] (1) INFO : -- > callsite <f> at mirror.c:25
[0.391770] (1) INFO : - Call codelet 'f' (on device 0)
[0.391971] (1) INFO : < -- callsite <f> at mirror.c:25

[... more callsites ...]

[0.393407] (4) INFO : -- > d elegatedstore, data <f> at mirror.c:32
[0.393458] (4) INFO : - Download mirror 0x7fff60d96180 (on device 0)
[0.393579] (4) INFO : < -- delegatedstore, data <f> at mirror.c:32
[0.393772] (1) INFO : -- > free, data <f> at mirror.c:33
[0.393861] (1) INFO : - Free mirror 0x7fff60d96180 (on device 0)
[0.394057] (1) INFO : < -- free, data <f> at mirror.c:33
[0.394199] (3) INFO : -- > delete, data <f> at mirror.c:34
[0.394259] (3) INFO : < -- delete, data <f> at mirror. c:34

[... more de - allocations ...]

[0.396549] (1) INFO : -- > release <f> at mirror.c:36
[0.396605] (1) INFO : - Release of grouplet 'f'
[0.397114] (1) INFO : < -- release <f> at mirror.c:36

Listing 33 - The runtime log obtained from the execution of the code from Listing 32 - An example of data mirroring in C

As you can see, thanks to data mirroring, we are able to quite simply ensure that once the callsite loop is

reached, all data is already present on the HWA.

4.9. Parallel directive (Using multiple HWA devices)

HMPP can dispatch computations on multiple HWA, provided that the user has allocated the memory

needed for each computation on the devices, following the “owner compute rule ”.

The owner computes rule reads that the HWA that ends up "owning" the data (because it has been allocated

on it) is the one that will carry out the computations.

In order to allocate data on a given device, all that is needed is to use the .device= òexpres sionò option

on an allocate directive of mirror allocations to let HMPP’s runtime allocate the data on the device which

number equals the value of the expression. This implies that using multi-devices with HMPP requires the

utilization of data mirrors (see chapter 4.8.4).

Then, you can use HMPP’s parallel directive on a loop scope to let HMPP dispatch the computations in

parallel on the allocated HWA (note: if that directive is not used, the computations will just occur on each

device alternatively, without even being used simultaneously).

The syntax of the parallel directive is the following:

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 52/86

!$hmpp parallel [, device ˮƨÄÅÖÉÃÅʍÎÕÍƨǂ

Where the directive parameters are:

Á device="device_num" : gives the number of the device on which the data should be executed. It

should not be necessary to specify it here as one should have allocated the data used within the

parallel execution with the data mirroring’s ñdevice=ò directive parameter.

The following complete example shows how dispatch computations on several devices once the data has

been allocated in round-robin on several HWA.

#pragma hmpp f codelet, target=CUDA, args[*].mirror, args[*].transfer=manual
void f(float a[100], float b[100]) {
 int i;
 for (i = 0; i < 100; ++i) {
 a[i] = a[i] + (b[i]);
 }
}
int main(void) {
 float x[4][100];
 float y[4][100];
 int i;
#pragma hmpp f allocate

 for (i = 0; i < 4; ++i) {
 // Declaration, then allocation of data mirrors on alternative devices
 #pragma hmpp f allocate, data["&x[i][0]"], size={100}, &
 #pragma hmpp & elementsize="sizeof(float)", device="i%2"
 #pragma hmpp f allocate, data["&y[i][0]"], size={100}, &
 #pragma hmpp & elementsize="sizeof(float)", device="i%2"
 // upload of data based on the address
 #pragma hmpp f advancedload, data["&x[i][0]","&y[i][0]"]
 }
 #pragma hmpp parallel
 for (i = 0; i < 4; ++i) {
 #pragma hmpp f callsite
 f(&x[i][0], &y[i][0]);
 }
 for (i = 0; i < 4; ++i) {
 #pragma hmpp f delegatedstore, data["&x[i][0]"]
 #pragma hmpp f free, data["&x[i][0]","&y[i][0]"]
 }
#pragma hmpp f release
 return 0;
}

Listing 34 - An example of the utilization of the parallel directive

4.10. Regions21 in HMPP

This section presents a set of HMPP directives to allow expressing computation for GPU as regions of code.

The goal is to avoid code restructuration to build the codelet.

A region is a merge of the codelet/callsite directives. Therefore, all the attributes available for codelet or

callsite directives can be used on regions directives.

21
 Be careful; do not confuse HMPP section, which refers to an array section (see chapter 4.6.4, Array

section in HMPP) with HMPP region, which refers to a block of statements.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 53/86

In C, the region directive must be inserted immediately before a block.

In FORTRAN, the region and the corresponding endregion directives must be inserted around a part of

executable code.

The constraints for writing regions are the same as for codelets (see chapter 3.1 for more details). In

addition, the control flow must remain inside the region; that is, there must not be any:

Á ñreturnò (in C) and ñstopò (in FORTRAN);

Á no ñbreakò and ñcontinueò (in C), ñcycleò and ñexitò (in FORTRAN) to a loop enclosing the

region;

Á ñgotoò to jump inside or outside the region.

We distinguish two parts in the declaration of a region: one dedicated to the codelet parameters, the other

dedicated to the callsite parameters. So, the syntax for the definition of a region is the following:

In C language:

#pragma hmpp [< MyGroup>] [labe l] region
 [, args[arg_items].io= [in | out | inout | none]]*
 [, con d = "expr"]
 [, args[arg_items].transfer= [atcall|atfirstcall|manual| auto]]*
 [, target= target_name [: target_name]*]
 [, args[arg_items].size={ dimsize[, dimsize]* }]*
 [, args[arg_items].addr=" expr "]*
 [, asynchronous]?
 [, private=[arg_items]]*

 {

C BLOCK STATEMENTS

 }

In FORTRAN language:

!$hmpp [< MyGroup>] [labe l] region
 [, args[arg_items].io= [in | out | inout | none]]*
 [, cond = "expr"]
 [, args[arg_items].transfer= [atcall|atfirstcall|manual| auto]]*
 [, target= target_name [: target_name]*]
 [, args[arg_items].size={ dimsize[, dimsize]* }]*
 [, args[arg_items].addr=" expr "]*
 [, asynchronous]?
 [, private=[arg_items]]*

FORTRAN STATEMENTS

!$hmpp [< MyGroup>] [labe l] endregion

Where the directive parameters are:

Á All the codelet parameters refer to parameters available for the codelet directive (see chapter 4.5.1,

codelet directive)

Á All the callsite parameters refer to parameters available for the callsite directive (see chapter 4.5.3,

callsite directive);

Codelet parameters

Callsite parameters

Codelet parameters

Callsite parameters

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 54/86

Á private: specifies the variables that should be re-declared to be only used in the region. Typically,

this parameter applies for loop induction variables. The HMPP private keyword usage is identical to

the OpenMP private keyword.

Since HMPP 2.4, HMPP provides users with an automatic detection of the input and output data. So, by

default, variables that are only read are seen as input (IN intent) while those that are written are seen are

both input and output (INOUT intent). To avoid useless transfer, users can override intents determined by

HMPP using the .io attributes.

HMPP offers the ñ-- io -reportò option to display the intents detected by HMPP.

For instance, with the following region definition:

#pragma hmpp <group> foo region
{
 int i;
 for(i = 0; i < n; ++i)
 r[i] = a[i]*2.0f;

 for(i = 0; i < n; ++i)
 b[i] = b[i]*2.0f;
}

The ñ-- io -reportò option provides the output below:

$ hmpp -- io - report gcc simple_region - 000.c - o test.exe
In GROUP 'group'
REGION 'foo' at simple _region - 000.c:25, function
'__hmpp_region__group__foo'
 Parameter 'n' has intent INOUT
 Parameter 'a' has intent IN
 Parameter 'b' has intent INOUT
 Parameter 'r' has intent INOUT

As can be seen, r is detected as both an input and output.

Since we know that r is only written, its intent property can be force to output only and thus avoiding a

needless transfer from the host to the GPU, as follows:

#pragma hmpp <g> foo region, args[r].io=out
{
 int i;
 for(i = 0; i < n; ++i)
 r[i] = a[i]*2.0f;

 for(i = 0; i < n; ++i)
 b[i] = b[i]*2.0f;
}

The following restrictions apply:

Á Regions cannot be nested;

Á Asynchronous region must have at least a label;

Á Only ñhmppcgò directives are allowed inside the region.

 Warning:

In FORTRAN, all variables accessed in a region must have their declarations in the same compilation unit.

That is, at the present time, you cannot create a region where a variable is defined in an external module.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 55/86

4.11. External and native22 functions

 Warning:

HMPP 3.0.0 only supports external functions.

For convenience, the text referencing external and native functions was left in state. In HMPP 3.0.0, only the

external function is to be considered.

Automatic inlining of functions called within codelets was already supported by HMPP. HMPP 2.5 introduces

new mechanisms to support direct calls to functions in codelets.

Functions that can be called from codelets are either hand-written CUDA/OPENCL native functions or

external C/FORTRAN functions. In codelets generated by HMPP, these functions can be seen as CUDA

__device__ functions called in CUDA kernels. External and native functions are not CUDA

kernels or library functions such as CUBLAS.

An “external ” function is a function defined in the source code (C or FORTRAN), not necessarily in the

same file, and called within a codelet or a region. In this context HMPP automatically generates its CUDA or

OpenCL version in an XML file.

External functions can be compiled separately from the files containing codelets or regions that call it. This

avoids code duplication when a function is used in several HMPP codelets or regions.

External functions are declared using the following HMPP directives, placed just before the function

definition:

In C:

#pragma hmpp function, targe t= list_of_targets

In FORTRAN:

!$hmpp function, target= list_of_target

The use of native and external functions requires HMPPCG directives. So complete description of external

and native functions is detailed in [R3].

22
 Native functions are not available in HMPP 3.0.0. These one can be used with HMPP 2.5.x. This feature

will be restored in a future version.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 56/86

5. Supported Languages

The HMPP codelet generators do not handle full languages for C and FORTRAN. This restriction aims at

ensuring portability of the code on most HWAs (for instance, allowing pointer arithmetic in C language would

forbid generation of code for many hardware platforms) and also performance.

Moreover, it should be noted that in addition to the restrictions bring by HMPP, hardware constructors do not

offer for all targets a full support of the language. End-users should pay attention to the current limitations of

the hardware accelerators that they want to use by consulting hardware constructor’s website.

5.1. Input C Code

As mentioned above, the HMPP codelet generators do not handle the full C language. The HMPP codelet

generators take C99 input code so the array size can be specified in the parameter declaration. The

remainder of this section is organized as follow.

Á Section 5.1.1 describes the valid C constructs for HMPP;

Á Section 5.1.2 shows how codelet parameter data sizes are addressed by the HMPP codelet

generator.

5.1.1. Supported C Language Constructs

In this section we describe the language constructs which are supported by the HMPP codelet generators.

The codelet prototype is preferably in C99 style in which all array sizes are specified in the declaration (see

Section 5.1.2). Typically a codelet code looks like:

1 void simplefunc(int n, float s1[1], float v2[n], float v3[n]){
2 int i;
3 fl oat r = s1[0];
4 for (i = 0 ; i < n ; i++) {
5 r += v2[i] * v3[i];
6 }
7 s1[0] = r;
8 }

Listing 35 - C codelet code example

Below are the language constructs supported by the HMPP codelet generators. If a construct is not

supported, the HMPP codelet generator issues an error message and no codelet implementation is

produced.

1. Atomic data types

a. char , unsigned char , short , unsigned short , integer , long , long long , unsigned

integer , unsigned long , unsigned long long ;

b. float , double , complex

2. Data structures

3. Language constructs

a. All arithmetic, shift and comparison operations.

b. for loops with simple induction variables. The following styles of for loops are supported:

for (i=lowbound ; i<highbound ; i++){...}
for (i=lowbo und ; i<=highbound ; i++){...}
for (i=lowbound ; i<=highbound ; i = i+s){...}

Where lowbound and highbound are invariant in the loop. The step value s is an integer constant.

Furthermore, the induction variable i cannot be modified in the loop body.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 57/86

4. Conditional statements if() ... else

5. Calls to intrinsic (see Section Erreur ! Source du renvoi introuvable. for the list of supported

intrinsic) and functions.

The following constructs are not supported in a codelet:

1. switch and case statements.

2. Function pointers.

 Warning:Initialization of structure using C99 style is not supported.

5.1.2. Parameter Passing Convention for C Codelets

To implement the communications between the host and HWAs, it is necessary to provide the HMPP API

runtime with the size of the data to be transferred to/from the HWAs. Listing 36 illustrates this.

 Warning:By default, HMPP assumes that no aliasing exists between codelet parameters.

1 /* C99 syntax */
2 #pragma hmpp csmain codelet, args[a].io=in, &
2 #pragma hmpp & args[b].io=in, &
2 #pragma hmpp & args[r].io=out
3 void csmain(unsigned int S, float r[S], float a[S], float b[S]) {
5 unsigned i;
6 for (i=0 ; i<S ; i++){
8 r[i] = b[i] / s qrt(a[i]);
9 }
10 }

Listing 36 - Parameter data size passing using C99 for codelets

5.1.3. Inlined functions

HMPP supports the inlining of functions with the following restrictions:

Á The definition of the inlined function must be available in the compilation scope of the codelet;

Á The inlined function must not have any HMPP directives;

Á The inlined function must not be recursive;

Á The inlined function must not access global variables

5.1.4. Atomic intrinsic functions

HMPP supports the following atomic functions inherited from gcc and icc compilers.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 58/86

Name Type

Table 5 - Supported atomic intrinsic functions

These built-ins functions perform operation atomically according to their definition and return the value that

had previously been in memory.

type __sync_fetch_and_add(type *ptr, type value)

int or unsigned int

type __sync_fetch_and_sub(type *ptr, type value)

int or unsigned int

type __sync_fetch_and_or(type *ptr, type value)

int or unsigned int

type __sync_fetch_and_and(type *ptr, type value)

int or unsigned int

type __sync_fetch_and_xor(type *ptr, type value) int or unsigned int

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 59/86

5.2. Input FORTRAN Code

The HMPP codelet generators do not support the full FORTRAN language. The subset taken into account is

similar to the C subset described in Chapter 5.1. The remainder of this section is organized as follow:

Á Section 5.2.1 describes the supported FORTRAN language constructs.

Á Section 5.2.2 indicates how codelet parameter data sizes are addressed by the HMPP codelet

generators.

5.2.1. Supported FORTRAN Language Constructs

In this section we describe the language constructs that are supported by the HMPP codelet generators.

Typically a codelet code looks like:

1 !$hmpp simple codelet, target=CUDA
2 SUBROUTINE simple(n,m,inv,inm,outv)
3 IMPLICIT NONE
4 INTEGER, INTENT(IN) :: n,m
5 REAL, INTENT(IN) :: inv(n)
6 REAL, INTENT(IN) :: inm(m,n)
7 REA L, INTENT(OUT) :: outv(m,n)
8 INTEGER :: i,j
9
10
11 DO j = 1,n
12 DO i = 1,m
13 outv(i,j) = inv(j) * inm(i,j)
14 ENDDO
15 ENDDO
16
17 END SUBROUTINE simple

Listing 37 - FORTRAN codelet code example

The language constructs presented below are the ones supported by the Fortran HMPP codelet generators.

If a construct is not supported, the code generator issues an error and no codelet is produced.

Explicit declaration in codelet

The “IMPLICIT NO NE” statement is required in FORTRAN codelet. All variables must be explicitly declared

in FORTRAN codelets.

Supported Data Types

The table below summarizes the scalar data types that are supported within the codelets and shows how

they are interpreted.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 60/86

Current restrictions:

Á The KIND of all types is hard-coded to the values used by most FORTRAN compilers. In the future,

they will be configurable for each FORTRAN compiler,

Á User defined types via the TYPE statements are allowed with several restrictions,

Á The CHARACTER type and the character constants are only allowed for LEN=1. Virtually no operation

except comparison is allowed on characters so they are of limited usage except when passed as

arguments to the codelet.

Using Fortranôs User defined types (UDT) in Codelets

 The Alignment and Size of All UDT Members Must Be Known at Compile
Time

Scalar members are always allowed:

 TYPE Sample
 I NTEGER :: x,y,z
 REAL :: a,b,c
 END TYPE Sample

Array members are allowed assuming that their dimensions are known by the HMPP compiler. In practice,

this means that the INTEGER expressions used to specify the array member shapes should only contain

literal constants and scalar PARAMETERs known by HMPP:

Name Type Semantic

ABS(x) REAL*n or INTEGER*n Absolute value

LOG(n) REAL*n Natural logarithmic

LOG10(n) REAL*n Base- 10 logarithmic function

SQRT(n) REAL*n Square root

MIN(a,b,...) REAL*n or INTEGER*n Minimum

MAX(a,b,...) REAL*n or INTEGER*n Maximum

MOD(a,b) INTEGER*n a modulo b

EXP(a) REAL*n Base- E exponential

COS(a) REAL*n Cosine

SIN(a) REAL*n Sine

TAN(a) REAL*n Tangent

ACOS(a) REAL*n Arc - Cosine

ASIN(a) REAL*n Arc - Sine

ATAN(a) REAL*n Arc - Tangent

COSH(a) REAL*n Hyperbolic Cosine

SINH(a) REAL*n Hyperbolic Sine

TANH(a) REAL*n Hyperbolic Tangent

ACOSH(a) REAL*n Inverse Hyperbolic Cosine

ASINH(a) REAL*n Inverse Hyperbolic Sine

ATANH(a) REAL*n Inverse Hyperbolic Tangent

IAND(a,b) INTEGER*n Bitwise AND

IOR(a,b) INTEGER*n Bitwise OR

IEOR(a,b) INTEGER*n Bitwise Exclusive - OR

NOT(a) INTEGER*n Bitwise NOT

REAL(a) Convert a to REAL

DBLE(a) Convert a to DOUBLE PRECISION

(i.e. REAL(8))

INT(a) Convert a to INTEGER

INT1(a) Convert a to INTEGER(1)

INT2(a) Convert a to INTEGER(2)

INT4(a) Convert a to INTEGER(4)

INT8(a) Convert a to INTEGER(8)

Table 6 - Supported FORTRAN data types

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 61/86

 INTEGER, PARAMETER :: N=100, P=200
 TYPE Sample
 INTEGER :: x(4,N+1)
 REAL :: y(N:P)
 END TYPE Sample

All basic FORTRAN types are supported (INTEGER, LOGICAL, REAL, COMPLEX and CHARACTER of any

kinds).

Restriction:

The CHARACTER type is only supported with a LEN of 1.

Members can also be of another user-defined type assuming, of course, that a type does not attempt to

include itself directly or indirectly.

 TYPE T1
 INTEGER :: a,b,c
 END TYPE T1
 TYPE T2
 TYPE(T1) :: x,y
 END TYPE T2
 TYPE T3
 TYPE(T1) :: x,y
 TYPE(T3) : z !!!!! ILLEGAL
 END TYPE T3

 Members with the POINTER or the ALLOCATABLE Attribute Are Not
Allowed

POINTER and ALLOCATABLE imply a reference to a memory area which, in the general case, is not

managed by HMPP (the host and the HMPP target typically have distinct memory spaces) except in the

situation where the structure is defined as a codelet’s parameter and the data are not accessed in the

codelet.

In the case where the pointer is defined as a local variable of the codelet, this construction is not supported

by HMPP.

Local ALLOCATABLE arrays are supported in HMPP 3.x.

 UDT Can Be Imported From Modules

The limitations are the same than for PARAMETER values imported from modules: the Fortran file defining

the module must have been previously compiled with HMPP.

 MODULE MyTypes
 TYPE Point
 REAL :: x,y,z
 END TYPE Point
 END MODULE MyTypes
 ...
 USE MyTypes
 ...
 !$hmpp project codelet, target=CUDA
 SUBROUTINE project(points)
 TYPE(Point), INTENT(IN) :: points
 ...
 END SUBROUTINE project(points)

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 62/86

Known Limitations to the support of user-defined-types

 Intel Compiler and SEQUENCE

A UDT declaration may start by a SEQUENCE statement to indicate that the compiler is not allowed to

reorder the members. The FORTRAN standard does not clearly specify the semantic of the SEQUENCE

statement (or of its absence). In practice, it does seem to have any effect in most compilers with the

exception of the Intel compiler (ifort) where SEQUENCE removes all padding normally inserted to meet the

alignment constraints of the members.

Let's consider, for example, the following UDT declaration:

 TYPE Data
 SEQUENCE
 INTEGER(1) :: a ! 8 bit integer at byte offset 1
 REAL(4) :: b ! 32bit real at byte offset 2
 END TYPE Data

The overall size of this UDT is 5 bytes. Without the SEQUENCE statement, a padding of 3 bytes would be

inserted between the members a and b, and the overall size would be 8 bytes.

Accessing misaligned data-types is slower but legal on Intel processors. This is not the case on most of the

HMPP target (especially GPUs where misaligned accesses are illegal).

For that reason, the SEQUENCE statement is not supported in HMPP codelets when using the Intel

FORTRAN compiler.

 Alignment of COMPLEX Data in CUDA

In the current version of HMPP, the COMPLEX FORTRAN types are implemented using the CUDA native

types float2 and double2 that respectively represent a pair of 'float' and a pair of 'double'.

Unfortunately, float2 and double2 have different alignment constraints than their FORTRAN counterparts

(e.g. float2 are aligned to multiples of 8 bytes while COMPLEX(4) are typically aligned like REAL(4) on

multiples of 4 bytes). The specific alignment constraints of float2 and double2 can increase the

performance of regular arrays of complex elements but as a side effect, they also break the compatibility

between the implementation of UDT on the host and on the CUDA target.

Consider, for example, the following type:

 TYPE Value
 REAL :: x
 COMPLEX :: y
 REAL :: z
 END TYPE Value

On most host FORTRAN compilers, that structure is implemented by:

¶ a 4 bytes REAL at offset 0

¶ a 8 bytes COMPLEX at offset 4

¶ a 4 bytes REAL at offset 12

The current implementation in HMPP CUDA is different:

¶ A 4 bytes 'float' at offset 0

¶ A 4 bytes padding at offset 4

¶ A 8 bytes 'float2' at offset 8

¶ A 4 bytes 'float' at offset 16

¶ A 4 bytes padding at offset 20 (to make the structure size a multiple of 8, the float2 alignment size)

In practice, UDT containing COMPLEX members are still possible in HMPP/CUDA if and only if those

members are aligned on the host to a multiple of the COMPLEX type.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 63/86

For instance, the previous UDT can be made compatible with CUDA by inserting some dummy padding

members before the misaligned complex and at the end of the type.

 TYPE Value
 REAL :: x
 INTEGER(4) :: padding1
 COMPLEX :: y
 REAL :: z
 INTEGER(4) :: padding2
 END TYPE Value

In future version, this manual padding will not be strictly required but may be recommended to improve

performances.

Declarations

Declarations can be provided using the old F77 or the new F90 form:

 INTEGER a,b ! F77 form
 INTEGER :: c,d ! F90 form

The attribute DIMENSION can also be used to specify array shapes:

 INTEGER :: A(10)
 INTEGER,DIMENSION(10) :: B

Parameters

PARAMETER statements and attributes are supported for scalar objects only.

 INTEGER, PARAMETER :: N=42
 INTEGER M
 PARAMETER (M = 42)

Inlined functions

HMPP supports the inlining of functions with the same restrictions as for C language (see chapter 0).

Intrinsic functions

Intrinsic functions used in codelets must have been declared through the use of the INTRINSIC FORTRAN

statement. The example below illustrates the use of intrinsic functions in FORTRAN codelets.

 ƛ
 REAL(8),DIMENSION(N) :: V
 real(8),dimension(N,N) :: Loc
 INTEGER :: J
 INTRINSIC :: LOG, COS, SIN

 ƛ

Other Type Attributes and Declarations

Most type attributes introduced by Fortran90 are currently not supported in codelets (POINTER, VOLATILE,

TARGET, ...). A noticeable exception is INTENT which is in fact recommended for all codelet arguments.

COMMON, EQUIVALENCE, BLOCKDATA and all declaration statements that may create aliasing between

variables are not allowed in codelets.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 64/86

Arrays

 Arrays as codelet arguments

Array bounds of arguments should be fully specified using constants or other scalar integer arguments of the

codelet.

Current restrictions:

Á Scalar integer arguments used to specify an array bound shall not be modified within the codelet.

Ideally, they should have the INTENT(IN) attribute,

Á Scalar integer arguments used to specify an array bound must appear before that array in the

argument list,

Below is a typical example:

 SUBROUTINE codelet(m,n,A,B,C)
 INTEGER, INTENT(IN) :: m,n
 INTEGER, INTENT(INOUT) :: A(100), B(m,n), C(0:m*n - 1)
 ...
 END SUBROUTINE

Listing 38 - FORTRAN array declaration in codelet

The following forms of arrays are not allowed:

Á Assumed-size array arguments as in A(*) or B(100,*)

Á Assumed-shape and deferred-shape array arguments as in A(:) or B(3:) since the upper

bound is not specified

Á Arrays with an ALLOC ATABLE or POINTER attribute

Remark: Array arguments of the form A(:m) are allowed since their lower bound are by default equal to one.

 Arrays as local variables in codelet

Two kinds of local arrays are allowed in codelets:

Á Arrays whose shape is entirely specified using constants or integer arguments of the codelet.

Á Arrays with the ALLOCATABLE attribute

Below is a typical example:

 SUBROUTINE codelet(m,n,A)
 INTEGER, INTENT(IN) :: m,n
 ...
 REAL :: TMP1(m,0:n+1)
 REAL, ALLOCATABLE :: TMP2(:,:)
 ...
 END SUBROUTINE

Listing 39 - Local FORTRAN arrays in codelet

The ALLOCATE and DEALLOCATE statements are allowed within codelet to manage arrays with the

ALLOCATABLE attribute. However, they can only take place outside the gridified loops.

The most frequently used implicit functions are supported:

Á LBOUND

Á UBOUND

Á SIZE

IF statements

The following forms of IF statements are supported:

1. IF .. ENDIF constructs optionally with ELSE IF and ELSE:

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 65/86

IF (A>B) THEN
 C = 1
ELSE IF (A<B) THEN
 C = - 1
ELSE
 C = 0
ENDIF

2. Logical IF statements:

IF (A==B) C=0

Current restrictions:

Á SELECT CASE constructs are currently not supported.

Á GOTOs are not supported as well as arithmetic IF statements that are in fact disguised GOTOs.

Loops

The following forms of loops are supported:

1. DO statements with index, start, end and an optional step. The index and all 3 expressions shall be of

type integer.

2. DO WHILE statements;

3. Standalone DO - so a potentially infinite loop.

A DO construct must be terminated by an ENDDO statement. The old F77 form using a termination label is not

allowed. EXIT and CYCLE statements are allowed within DO constructs.

Current restrictions:

Á The step, if any, must be a simple constant (such as 1 or -2).

Á No loop name shall be specified to an EXIT or CYCLE statement. They are applied to the first outer

loop.

Á The computation of the number of iterations in a loop of the form (a) is assumed not to overflow when

computed using the type of the index. In practice, e.g. for INTEGER*4, the number of iterations shall

not be greater than 2*31 - 1 = 2147483647 .

Modules

HMPP brings a preliminary support of FORTRAN modules. The objective is to provide users with the most

frequently constructions used in FORTRAN applications. Thus, scalar PARAMETER variables of types

INTEGER, LOGICAL, REAL and COMPLEX defined in modules can be directly used in HMPP codelets.

However, this first implementation mainly focuses on INTEGER parameters. Thus, the following operations

are supported on INTEGER type only:

Á Constant definitions. Evaluation of expressions is supported for the usual INTEGER arithmetic

operators ñ+, - , *, /ò.

MODULE foo
 INTEGER, PARAMETER :: N=24, M=5
 INTEGER, PARAMETER :: P= ((N+1)*(M - 5))/(M+N)
END MODULE foo

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 66/86

Á INTEGER comparison and LOGICAL operators (.OR., .AND., .EQ., …)

MODULE foo
 INTEGER, PARAMETER :: M = 34
 INTEGER, PARAMETER :: N = 22
 LOGICAL, PARAMETER :: M_IS_BIGGER = M>N
 LOGICAL, PARAMETER :: M_EQUALS_N = M .EQ. N
 LOGICAL, PARAMETER :: DEBUG = .TRUE.
 LOGICAL, PARAMETER :: M_IS_SMALLER = .NOT. (M_IS_BIGGER .OR. M_EQUAL_N)
END MODULE foo

Á Intrinsic functions to query type kind information (SELECTED_INT_KIND, SELECTED_REAL_KIND

and KIND)

MODULE foo
 INTEGER, PARAMETER :: INT4 = SELECTED_INT_KIND(4)
 INTEGER, PARAMETER :: INT10 = SELECTED_INT_KIND(10)
 INTEGER, PARAMETER :: INT14 = SELECTED_INT_KIND(14)

 INTEGER, PARAMETER :: FLOAT_4_7 = SELECTED_REAL_KIND(4,7)
 INTEGER, PARAMETER :: FLOAT_P10 = SELECTED_REAL_KIND(P=10)
 INTEGER, PARAMETER :: FLOAT_R20 = SELECTED_REAL_KIND(R=40)

 INTEGER, PARAMETER :: FLOAT = KIND(1.0E0)
 INTEGER, PARAMETER :: DOUBLE = KIND(1.0D0)
END MODULE foo

Because of the difficulty to ensure consistent rounding in floating point arithmetic, operations on REAL or

COMPLEX data types are not yet supported. It is however possible to define parameters of REAL or

COMPLEX types as long as their expressions only contain:

Á REAL constant (e.g. 1.2, 1.2D0, 1.2_4, 1.2_INT4)

Á COMPLEX constant;

Á Unary operator ñ-ñ;

Á Parenthesis;

Á References to other parameters of the same type.

REAL conversions whether they are implicit or explicit are not supported. In practice that means that the

expression must be of the exact same type than the parameter. For instance, the example below is correct if

we assume that the default REAL kind is 4:

REAL(4), PARAMETER :: X1 = 3.1415
REAL , PARAMETER :: X2 = 3.1415_4

However, the following equivalent declarations containing an implicit and an explicit cast to REAL(8) will not

be able to be evaluated:

REAL(8), PARAMETER :: Y1 = 3.1415
REAL(8), PARAMETER :: Y2 = REAL(3.1415,kind=8)

In practice, one could write the declaration which is similar even though it is not semantically equivalent:

 REAL(8), PARAMETER :: Y =3.1415_8

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 67/86

 Note: FORTRAN module support will be improved in future releases, so some of these limitations

should be removed.

Operations

Arithmetic operations are currently limited to scalars. Support for arrays should be available in future

releases.

All native operators are supported:

Á Arithmetic: + - / * **;

Á Comparison: > < >= < == /= (and their 'dotted' forms: .GT. .LT. etc.);

Á Logical: .NOT. .AND. .OR. .EQV. .NEQV.

Function Calls

Only calls to intrinsic functions listed below are supported. All arguments should be of scalar type.

Name Type Semantic

ABS(x) REAL*n or INTEGER*n Absolute value

LOG(n) REAL*n Natural logarithmic

LOG10(n) REAL*n Base- 10 logarithmic function

SQRT(n) REAL*n Square root

MIN(a,b,...) REAL*n or INTEGER*n Minimum

MAX(a,b,...) REAL*n or INTEGER* n Maximum

MOD(a,b) INTEGER*n a modulo b

EXP(a) REAL*n Base- E exponential

COS(a) REAL*n Cosine

SIN(a) REAL*n Sine

TAN(a) REAL*n Tangent

ACOS(a) REAL*n Arc - Cosine

ASIN(a) REAL*n Arc - Sine

ATAN(a) REAL*n Arc - Tangent

COSH(a) REAL*n Hyperbolic Cosine

SINH(a) REAL*n Hyperbolic Sine

TANH(a) REAL*n Hyperbolic Tangent

ACOSH(a) REAL*n Inverse Hyperbolic Cosine

ASINH(a) REAL*n Inverse Hyperbolic Sine

ATANH(a) REAL*n Inverse Hyperbolic Tangent

IAND(a,b) INTEGER*n Bitwise AND

IOR(a,b) INTEGER*n Bitwise OR

IEOR(a,b) INTEGER*n Bitwise Exclusive - OR

NOT(a) INTEGER*n Bitwise NOT

REAL(a) Convert a to REAL

DBLE(a) Convert a to DOUBLE PRECISION

(i.e. REAL(8))

INT(a) Convert a to INTEGER

INT1(a) Convert a to INTEGER(1)

INT2(a) Convert a to INTEGER(2)

INT4(a) Convert a to INTEGER(4)

INT8(a) Convert a to INTEGER(8)

Table 7 - Supported Intrinsic functions

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 68/86

 Warning

In FORTRAN, local variables can be stored in global memory and be initialized at startup. Then they keep

their value between function calls. This is not the case in codelets where variable declared locally are

assumed to be strictly local (as in C).

5.2.2. Unsupported statements in codelet

The following statements are not supported in HMPP Fortran codelets:

Á WHERE, SELECT, FORALL, GOTO, CONTAINS, INCLUDE;

Á I/O statements: OPEN, CLOSE, …

Á Memory statements: =>,

Á Arithmetic if

5.2.3. Parameter Passing Convention for FORTRAN codelets

To implement the communication between the host and the HWAs, it is necessary to provide the HMPP

runtime with the size of the data to be transferred to/from the HWAs. This is performed using the FORTRAN

syntax with the array bound specified as an expression of the codelet parameters as shown in the example

presented in Section 5.2.1. In other words, a parameter declaration such as A(*) is not supported. The

INTENT(IN|INOUT|OUT) clause is mandatory.

5.2.4. Known limitations

HMPP FORTRAN parser should accept most of the syntaxes described in the F2003 norm.

However, the following F2003 syntaxes are known to be unsupported even outside codelets:

CLASS, EXTENDS, PASS and other TYPE-related features introduced in F2003

Á The ENUM construct.

Á The SELECT TYPE construct.

Á The ASSOCIATE construct.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 69/86

6. HMPP Codelet Generators

The HMPP codelet generators are used by the HMPP compilers to generate HWA implementations of the

codelets.

HMPP includes different generators according to the considered architecture:

Á CUDA for NVIDIA architecture;

Á OPENCL for NVIDIA or AMD ATI Stream architecture.

It should be noted that HMPP codelet generators are based on the state-of-the-art of SDK and drivers

marketed by hardware constructors. Thus HMPP inherits same limitations.

 Warning:

HMPP 3.0.0 only supports the CUDA target for codelet generation. The OpenCL target will be supported

current Q1 2012 (currently available in HMPP 2.5.x).

For convenience, the text referencing the two targets was left in state. In HMPP 3.0.0, only the CUDA target

is to be considered.

6.1. CUDA Generator

This generator produces CUDA implementation of HMPP codelets to be executed on NVIDIA GPUs.

This generator is used when the target CUDA is specified as shown in the following codelet declaration:

C: #pragma hmpp mycodelet codelet, args[vout].io=inout, target= CUDA
FORTRAN: !hmpp mycodelet codelet, args[vout].io=inout, target= CUDA

6.2. OpenCL Generator

This generator produces OpenCL implementation of HMPP codelets to be executed on NVIDIA GPUs as

well as AMD ATI Stream GPU supporting OpenCL framework.

This generator is used when the target OPENCL is specified as shown in the following codelet declaration:

C: #pragma hmpp mycodelet codelet, args[vout].io=inout, target= OPENCL
FORTRAN: !hmpp mycodelet codelet, args[vout].io=inout, target= OPENCL

6.3. Naming Convention

To be correctly handled by the different tools of the HMPP workbench, codelet files (either hand-written or

automatically generated) must respect a specific naming convention. The general name format of HMPP

codelets and libraries are described below.

6.3.1. CUDA Codelet Generator

With the CUDA keyword specified, generated file names follow the rules below.

Generated target source code

The generated file has the following name:

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 70/86

[label]_[target].[ext] . [target _ext]

Where:

Á [label] is:

o The label of the group in the case of a group,

o The label of the codelet in the case of a single codelet,

o The name of the function in the case where no label is defined.

Á [target] is ñcudaò in the case of CUDA.

Á [ext] is the file extension. Value is :

o ñhmgò: in the case of a group;

o ñhmcò: in case of codelet only

o ñhmfò: in case of codelet without any labels.

Á [target_ext]: is ñcuò in the case of CUDA.

Generated library

Following the generation of the source code, a dynamic library is generated to be loaded by the HMPP

runtime.

The generated dynamic library has the following name:

[label]_[target].[ext]

Where:

Á [label] is:

o The label of the group in the case of a group,

o The label of the codelet in the case of a single codelet,

o The name of the function in the case where no label is defined.

Á [target] is ñcudaò in the case of CUDA.

Á [ext] is the file extension. Value is :

o ñhmgò: in the case of a group;

o ñhmcò: in case of codelet only

o ñhmfò: in case of codelet without any labels.

So with the previous rules, for the following code:

1 #pragma hmpp r pclabel codelet target=CUDA, ...
2 void myFunctionToSpeedup(float *in,float *out){
3 codelet body...
4 }

The source codelet file will be rpclabel_cuda .hmc .cu and the corresponding library file will be

rpclabel_cuda .hmc

6.3.2. OPENCL Codelet Generator

Unlike the CUDA target, two files are generated for the OPENCL target:

Á One dedicated to the initialization of the openCL context and which may be seen as a wrapper for the

launch of the opencl kernel. In case of group, this file is named:

[grp_label] _[ta rget].[ext]

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 71/86

Á The other corresponding to the kernel to execute on the HWA. In case of group, this file is named:

[grp_label]_[target].cc - kernels.[ext]

So, the preceding rules still apply but with the following modifications:

Á [target] is opencl,

Á [ext] is “cc” for the wrapper file and “.cl” for the kernel.

So for the following code:

1 #pragma hmpp rpclabel codelet target=CUDA, ...
2 void myFunctionToSpeedup(float *in,float *out){
3 codelet body...
4 }

The generated files will be:

Á The source codelet file will be rpclabel_opencl.cc;

Á The kernel file will be rpclabel_opencl.cc - kernel.cl;

Á And the corresponding library file will be rpclabel_opencl.so.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 72/86

7. Compiling HMPP Applications

The HMPP development workbench provides developers with HMPP compilers in order to easily build HMPP

applications. HMPP compilers are available for C and FORTRAN
23

. They are used:

Á to preprocess HMPP annotated applications,

Á to extract and to generate HWA codelets,

Á and finally to compile and link the HMPP application.

To know the list of supported Operating System and compilers:

Á For Linux platform, please refer to[R5];

 Warning:

We introduce in this section the main concepts concerning the compilation of HMPP application. For some

historical reasons and to keep readability, examples are mainly given for Linux platforms.

HMPP 3.0.0 only supports Linux platform. Windows OS will be supported current Q2 2012 (currently

available in HMPP 2.5.x).

7.1. Overview

In terms of use, the HMPP compiler workflow is really close to traditional compilers. However, as illustrated

in Figure 8, we can distinguish two main paths:

Á The left one (in Figure 8) is dedicated to the compilation of the main application which will be

executed on the host processor (as in traditional compilers). In this case, we will designate the

compiler used under the name host compiler,

Á The right one (in Figure 8) is dedicated to the codelet generation and compilation. The codelet are

generated under the form of shared libraries in order to be loaded by the HMPP runtime during the

execution of the application. In this case, we will designate the compilers under the name of “HMPP

Codelet Generatorò for the generation of the codelets and the “hardware vendor compilersò for the

compilation of the codelet using the provided hardware vendor tools.

23
 FORTRAN compilers are available on Linux platforms only.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 73/86

Figure 8 - HMPP compiler workflow

Compiling a HMPP program is done by using the hmpp command followed by the appropriate compiler

depending on the considered language (C or FORTRAN):

$ hmpp gcc program.c - o program.exe

Or:

$ hmpp ifort program.f90 - o program.exe

Or

$ hmpp cl program.c - o program.exe

Like with usual compilers, the default output file name is a.out.

The hmpp commands successively runs the HMPP preprocessor to process the directives by inserting calls

to the HMPP runtime and then invoke the user’s specified native compiler to produce the application

executable.

hmpp extracts the marked codelets from the application sources and generates their hardware accelerated

implementation as shared libraries with the appropriate HMPP codelet generator.

7.2. Common Command Line Parameters

The HMPP compiler runs as follow:

$ hmpp [HMPP_OPTIONS] HOST_COMPILER [HOST_COMPILER_OPTIONS] files

Here is the list of the available command line options for HMPP compiler.

7.2.1. General Options

General options are:

Á - t, -- temp DIRNAME : sets the temporary directory (default is /tmp),

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 74/86

Á - k, -- keep : does not remove temporary files,

Á ïd[x]*, -- debug : set HMPP verbosity. A numerical value can be specified to increase the level of

the verbosity of the messages displayed.

Á The command line below illustrates the use of the –d option with a high value of verbosity (level 3).

$ hmpp Ƶd3 icc myHMPPApplication.c

7.2.2. Host compiler options

Most of the standard compiler options are supported by HMPP. These one are directly given on the

command line and follow the specification of the compiler.

The ñ-dò HMPP’s option can be notified on the command line to increases the level of verbosity of HMPP

during the compilation stage. Thus all the commands executed will be displayed allowing the user to check

that the right options are given to the compiler.

$ hmpp Ƶd ifort ƵO3 myHMPPApplication.f90

Note that ñïEò option runs preprocessor only. With this option, only the preprocessing of the file is

done, resulting in source files where the HMPP directives have been translated into calls to the HMPP

runtime. The preprocessed files can then be compiled with the usual general purpose compiler

Compiler options that would change the semantic of the code should not be used. Typical example for

FORTRAN compilers are the following:

Á - fall - intrinsics

Á - fd - lines - as - cod e, - fd - lines - as - comments

Á - fdefault - double - 8, - fdefault - integer - 8, - fdefault - real - 8

Á - fmodule - private

Á - fbackslash

Á - fcray - pointer

Á - fdollar - ok

Á …

These options are mainly to support FORTRAN dialects.

7.2.3. Report option

This option provides users with some results of analysis done by HMPP. Currently, HMPP offers:

Á --“--io-report”: option to display the intents detected by HMPP

7.2.4. HMPP codelet generation options

These options can be used to modify the default behavior of the HMPP command. These options are the

following:

Á - f, -- force : forces codelet file overwrite,

Á -- codelet - off : does not generate codelets,

Á -- codelet - build : generates and compiles codelets only,

Á -- codelet - generate : generates codelet only,

Á -- codelet - compile codelet_filename : compiles codelet only. The specified file must be a

codelet source file.

Please refer to “Appendix A - HMPP Compilation examples” for detailed use examples.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 75/86

7.2.5. HMPP native function compilation24

 Warning:

HMPP 3.0.0 only supports external functions.

For convenience, the text referencing external and native functions was left in state. In HMPP 3.0.0, only the

external function is to be considered.

In order to compile a file that uses HMPP native functions in codelets, the XML file that describes them

needs to be passed to the HMPP compiler using the -- native option:

-- native=[PATH]/my_xml_file.xml [, [PATH]/my_other_xml_file.xml]*

For example:

hmpp -- native=my_native_function.xml gcc sum.c - o sum.exe

When HMPP detects the use of a native function, the following HMPP DPL0716 message appears during the

compilation:

hmppcg: [Message DPL0716] sum.c:21: Using function 'my_function_name' provided at line 2 of
"my_xml_file.xml"

This message indicates that a native function, called in a codelet, has been found in the provided XML file

and that this function is going to be used in the generated code.

The generated codelet file is then compiled with the target compiler. In case of programming errors in the definition of the

native function in the XML file (code syntax, wrong prototype, wrong number or type of parameters…), the target

compiler should report them (note that with OpenCL, the compilation of the kernel is done at the execution

time).

7.2.6. HMPP external function compilation25

The files defining external functions need to be compiled before the ones that call them. So, the compilation

process has two phases:

Á First compile the files defining external functions. This generates their XML description file.

Á Then compile the files that use external functions.

When an external function is generated HMPP emits the following message:

hmpp: [Info] Generated XML filename is "hmppcg_functions.xml"

24
 See documentation [R3] to have a complete description of HMPP native functions.

25
 See documentation [R3] to have a complete description of HMPP external functions.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 76/86

Compilation of Files Defining External Functions

The following command create or update in the [PATH] directory the file named “myFunctions.xml ” that

contains all the target versions (CUDA/OpenCL) indicated in the declaration.

$ hmpp Ƶ- function=[PATH]/myFunctions.xml gcc Ƶc sum.c Ƶo sum.o

Compilation of files that call external functions

By using the following command, HMPP will look for the definition of the external functions in the

“myFunctions.xml ” file located in the [PATH] directory (current if empty):

$ hmpp Ƶ- function=[PATH]/myFunctions.xml gcc Ƶc extern.c Ƶo extern.o

7.2.7. HMPP codelet compilation: proprietary compiler options

In HMPP, the final codelet code is generated with the proprietary hardware accelerator compiler. In some

context, it may be useful to forward some specific options to this compiler.

For NVIDIA architecture, options can be passed to the nvcc compiler (NVIDIA CUDA Compiler driver) by

using the options ñ- - nvcc -optionsò.

For example the following command line will forward the options ñptxas=- v, ïarch,sm_13ò to the nvcc

compiler:

$ hmpp - d -- nvcc - options - Xptxas= - v, - arch,sm_13 ifort main.f90 - o main.exe
ƛ
hmpp: [Info] Running command: nvcc -- cudafe - options -- no_warning saxpy_cuda.cu - shared - Xptxas= - v
- arch sm_13 - o saxpy_cuda.so -- compiler - options - fPIC
ptxas info : Compiling entry function '_Z13hmppcg_loop0_ILj32ELj4EEvifPfS0_'
ptxas info : Used 3 register s, 48+48 bytes smem, 2000 bytes cmem[0], 8 bytes cmem[1]
ƛ

Another possible approach is to use an environment variable as for example the NVCCFLAGS.

NVCCFLAGS='- O3 - use_fast_math' hmpp gfortran - O3 sgemm1.f90 - o sgemm1.exe

7.2.8. HMPP miscellaneous options

Various others options can be used with HMPP:

Á ï- hmpp- version : displays HMPP version number,

Á ï- hmpp- full - version : displays HMPP full version message,

Á - h, -- help : displays an help message and exit,

Á ï- licenses : displays information about HMPP licenses found in the system and exit.

7.2.9. __HMPP predefined macro

During compilation the __HMPP macro is set by default. Its value is equal to the current HMPP version. For

instance -D__HMPP=20500 for HMPP 2.5.0 or -D__HMPP=30000 for HMPP 3.0

7.2.10. HMPP Environment Variables

The HMPP environment variables available for Linux and Microsoft Windows platforms are respectively

described into:

Á Document [R5] for Linux platforms;

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 77/86

8. Running HMPP Applications

The execution of the application is based on the HMPP runtime library that manages the correct execution of

the HMPP application according to the user’s environment.

For further details concerning the execution of HMPP program, readers will refer to:

Á [R5] for Linux platforms;

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 78/86

9. Supported Platforms and Compilers

For a complete knowledge of:

Á The operating systems on which you can run HMPP;

Á The Software Development Kit (SDK) provided by constructors and supported by HMPP;

Á The different compilers that you can use with HMPP

Please refer to:

Á [R5] for Linux platforms.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 79/86

10. HMPP Installation

Instructions to set HMPP on your system are respectively described into:

Á Document [R5] for Linux platforms.

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 80/86

11. Annexes

Annex 1. Glossary

callsite In HMPP context, designates a codelet call in the application

Codelet A routine to be remotely executed in a HWA. A codelet is a pure

function. It is a small self-contained subset section of executable

code whose dynamic execution consumes a significant amount of

time

CUDA Programming language for the NVIDIA CUDA compatible hardware

Device A particular HWA device

General purpose compiler The usual compiler for general purpose cores (i.e. gcc, icc, ifort, ...),

Guards Predicates expressed using HMPP directives to define runtime

conditions to execute a codelet RPC in a HWA

Hardware Accelerators (HWA) Devices used to speedup applications’ codes. Considered HWA

considered are GPUs, FPGAs, or streaming units (SSE, ...). The

HWA is not assumed to share memory with the main processor

HMPP A short name for HMPP development workbench

HMPP codelet Contains a pure function that can be executed in a HWA using

HMPP. The HMPP codelet also contains the HMPP runtime

callbacks

HMPP Group of codelets A group of codelets designates the execution of several codelets

based on a same hardware allocation and with the possibility to

share data.

HMPP codelet container HMPP codelet container is a file containing the HMPP runtime

callbacks and the HMPP target codelet

HMPP codelet generator Code generator that takes a C codelet as input and translates it into

the HWA input code

HMPP compiler The HMPP compiler drives all the HMPP passes to build a hybrid

application from host application compilation to codelet generation

and compilation.

HMPP Codelet Compiler Compiler used for the compilation of the HMPP codelets as opposed

to the HMPP Host Compiler that is used to produce the binary host

application.

HMMP Host Compiler Compiler used to produce the binary host application as opposed to

the HMPP Codelet Compiler which designates the compiler used to

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 81/86

compile the codelets.

HMPP development workbench A set of tools to help developers programming application that make

use of HWAs

HMPP directives Set of directives to program the use of HWAs in application source

HMPP native codelet HMPP native codelet is the original function that is annotated using

the HMPP directives

HMPP native function Hand-written CUDA or OPENCL functions provided by end-user and

called from HMPP codelet

HMPP external function Function defined in the source code (C or FORTRAN) and called

within an HMPP codelet or region. HMPP automatically generates its

CUDA or OpenCL version in an XML file.

HMPP preprocessor The HMPP preprocessor translates the HMPP directives into calls to

the HMPP runtime library

HMPP program A C or Fortran program that contains HMPP directives

HMPP region Defines a set of contiguous statements to be executed on the HWA.

HMPP runtime Runtime library linked with the HMPP program to manage the

execution of the HMPP codelet.

HMPP runtime callbacks API that provides the HMPP runtime with all the necessary services

to execute a target codelet

HMPP target codelet HMPP target codelet is the hardware dedicated implementation of

the codelet

HMPP template generator HMPP template generator creates an empty HMPP codelet container

Label A label identifying a group of directives defining the declaration and

execution of a codelet.

main thread Process that executes the original code

Remote Procedure Call (RPC) In HMPP, a RPC denotes the remote execution of a codelet in a

HWA

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 82/86

Annex 2. Bibliography

[R1] HMPPWorkbench-3.0_Basics.pdf, CAPS entreprise

[R2] HMPPWorkbench-3.0_HMPP_Directives_ReferenceManual.pdf, CAPS entreprise.

[R3] HMPPWorkbench-3.0_HMPPCG_Directives_ReferenceManual.pdf, CAPS entreprise

[R4] HMPPWorkbench-3.0_Windows_Manual.pdf, CAPS entreprise

[R5] HMPPWorkbench-3.0_Linux_Manual.pdf, CAPS entreprise

[R6] HMPPWorkbench-3.0_LicenseInstallationGuide.pdf, CAPS entreprise

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 83/86

Annex 3. List of Figures

Figure 1 - Workflow overview of the HMPP workbench .. 9

Figure 2 - Synchronous versus asynchronous RPC ... 12

Figure 3 - HMPP memory model ... 13

Figure 4 - Description of parameters and arguments in HMPP directives .. 17

Figure 5 – An example of the utilization of the with directive: using the with directive in the mirror allocation

loop of Listing 34 on page 54 .. 19

Figure 6 - HMPP output execution with all the transfers ... 43

Figure 7 - HMPP output execution – effect of the automatic clause on codelet’s arguments 44

Figure 8 - HMPP compiler workflow .. 73

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 84/86

Annex 4. List of Listings

Listing 1 - Codelet definition .. 11

Listing 2 - Wrong codelet definition due to the use of a global variable .. 11

Listing 3 - Wrong codelet definition due to aliasing between parameters ... 11

Listing 4 - HMPP codelet source code example .. 14

Listing 5 - Directive’s parameter and arguments (case of stand-alone codelet notation) 18

Listing 6 - Simple codelet declaration .. 23

Listing 7 - Codelet declaration inside a group ... 23

Listing 8 - Multiple codelet declarations (stand-alone codelet context) ... 24

Listing 9 - release directive example (case of stand-alone codelet notation) .. 27

Listing 10 - allocate directive example (case of stand-alone codelet notation) .. 28

Listing 11 - advancedload directive example (case of stand-alone codelet notation) 30

Listing 12 - Illegal use of the advancedload directive - (the actual arguments of the codelet is not in the

scope of the advancedload directive). ... 31

Listing 13 - delegatedstore directive example ... 32

Listing 14 - Array section specified with a shape (extract) (FORTRAN) ... 35

Listing 15 - Array section in advancedload directive - Transfer of 1 column (FORTRAN) 35

Listing 16 - Array section in advancedload directive - Transfer of 1 row (FORTRAN) 36

Listing 17 - atcall transfer policy example.. 37

Listing 18 - atfirstcall transfer policy example .. 38

Listing 19 - manual transfer policy example .. 39

Listing 20 - automatic transfer clause in codelet definition .. 40

Listing 21 - disregard directive example - codelet definition (extract) ... 42

Listing 22 - disregard directive example - callsite level ... 42

Listing 23 - Codelet definition with automatic data transfer validated ... 43

Listing 24 - disregard directive example - callsite level, introduction of two function calls 44

Listing 25 - disregard directive applied on statements .. 44

Listing 26 - disregard directive applied on a block of statements .. 45

Listing 27 - map directive example .. 46

Listing 28 - Illegal map directive usage ... 46

Listing 29 - mapbyname directive example ... 47

Listing 30 - resident directive example .. 48

Listing 31 - Results of the application described Listing 30 (with hmpp and usual compiler like gcc) 49

Listing 32 - An example of data mirroring in C .. 50

Listing 33 - The runtime log obtained from the execution of the code from Listing 32 - An example of data
mirroring in C ... 51

Listing 34 - An example of the utilization of the parallel directive ... 52

Listing 35 - C codelet code example ... 56

Listing 36 - Parameter data size passing using C99 for codelets ... 57

Listing 37 - FORTRAN codelet code example... 59

Listing 38 - FORTRAN array declaration in codelet .. 64

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 85/86

Listing 39 - Local FORTRAN arrays in codelet ... 64

 HMPP Directives

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 86/86

Annex 5. List of Tables

Table 1 - HMPP Directives .. 15

Table 2 - Access to HMPP arguments according to their scope ... 18

Table 3 - Intent in FORTRAN language versus HMPP Input/Output parameter policy................................... 21

Table 4 - C language parameter versus HMPP Input/Output parameter policy .. 22

Table 5 - Supported FORTRAN data types ... 60

Table 6 - Supported Intrinsic functions .. 67

